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Abstract 
This paper examines sources of potential bias in systematic reviews and meta-analyses which 
can distort their findings, leading to problems with interpretation and application by practitioners 
and policymakers. It follows from an article that was published in the Canadian Journal of 
Communication in 1990, “Integrating Research into Instructional Practice: The Use and Abuse of 
Meta-analysis,” which introduced meta-analysis as a means for estimating population parameters 
and summarizing quantitative research around instructional research questions. This paper begins 
by examining two cases where multiple meta-analyses disagree. It then goes on to describe 
substantive and methodological aspects of meta-analysis where various kinds of bias can 
influence the outcomes and suggests measures that can be taken to avoid them. The intention is 
to improve the reliability and accuracy of reviews so that practitioners can trust the results and 
use them more effectively. 

Résumé 
Cet article examine les sources des partis pris potentiels dans les synthèses systématiques et les 
méta-analyses qui peuvent déformer les conclusions, ce qui peut causer des problèmes 
d’interprétation et d’application par les praticiens et les responsables des politiques. Il fait suite à 
un article publié dans le Canadian Journal of Communication en 1990, intitulé « Integrating 
Research into Instructional Practice: The Use and Abuse of Meta-analysis », qui présentait la 
méta-analyse comme moyen d’estimer les paramètres relatifs à la population et de résumer la 
recherche quantitative sur les questions de recherche pédagogique. L’article commence avec 
l’examen de deux cas dans lesquels de nombreuses méta-analyses sont en désaccord. Il décrit 
ensuite les aspects substantifs et méthodologiques des méta-analyses dans lesquels divers types 
de partis pris peuvent influencer les résultats et suggère des mesures qui peuvent être adoptées 
pour éviter ces partis pris. L’intention est d’améliorer la fiabilité et l’exactitude des synthèses 
afin que les praticiens puissent compter sur les résultats et les utiliser plus efficacement. 
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Introduction 
In the Canadian Journal of Educational Communication (the forerunner of this journal) 1990, 
volume 19, number 3 (pages 171-195), Som Naidu, then a doctoral candidate in Educational 
Technology at Concordia University, and I co-authored an article entitled “Integrating Research 
into Instructional Practice: The Use and Abuse of Meta-analysis.” We hadn’t actually conducted 
a meta-analysis at that point, but we had read extensively about the methodology and drew 
examples from a variety of meta-analyses of that era, especially around the ongoing debate 
concerning the efficacy of mastery learning compared to regular classroom instruction. In that 
article, we wondered how two prominent meta-analyses (Lysakowski & Walberg, 1982; Guskey 
& Gates, 1986) and a “best evidence synthesis” by Robert Slavin (1987) could provide such 
different answers to the very same research question: “Does mastery learning produce better 
achievement outcomes than traditional group-based classroom instruction?” Lysakowski and 
Walberg reported an average effect size of around d+ = 0.94 (i.e., about one standard deviation 
difference between mastery learning and regular classroom) for k = 94 (i.e., 94 individual effect 
sizes) from 54 studies, while the Guskey and Gates meta-analysis reported a median effect size 
of between 0.40–0.60 for 25 studies by using more conservative methodological quality criteria 
than Lysakowski and Walberg. By contrast, Slavin found a median effect size of 0.0 for four 
studies using even more conservative inclusion criteria. Guskey and Gates also found wide 
variability among effect sizes, ranging from d = 0.02 to d = 1.70, suggesting the presence of 
variables (e.g., time-on-task) that might moderate the overall findings. Debate over the effects of 
mastery learning continued until behaviorist approaches to classroom instruction in public 
education lost favor in the late 1980s.  

It occurred to me at that time that meta-analysis might not be an ideal way to provide teachers 
with instructional guidance (hence the word abuse in the title), since it could produce such 
seemingly conflicting advice. Based on Lysakowski and Walberg, it was full speed ahead for 
mastery leaning, but according to Slavin, mastery learning was not worth the extra effort. The 
Guskey and Gates results were more equivocal. As it turns out, it is likely that the major source 
of discrepancy was in the literature selected by each reviewer (i.e., not a great deal of overlap) 
and the major differences in the inclusion/exclusion criteria applied by each (see Slavin for a 
detailed discussion of both of these issues).  

In retrospect, after conducting meta-analyses myself for almost 20 years, I am now convinced 
that there is no better means for synthesizing quantitative evidence—it is the best game in town, 
so to speak—so the rest of this paper will not be an attempt to discredit or debunk the notion of 
meta-analysis. Instead, it will describe the potential methodological pitfalls that may lead to 
biased results and the remedies that can lead to more reliable and possibly more consistent 
results across meta-analyses. At the same time, I will attempt to provide consumers with hints for 
spotting bias in the various steps and procedures involved in conducting a meta-analysis. As a 
caveat to this, it should be recognized that the published results of a meta-analysis—like any 
other report of research—might not include enough information for even the knowledgeable 
consumer to judge whether serious forms of bias are present or not. So what might appear to be a 
hint of bias might simply be poor reporting. 
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Bias is systematic inaccuracy in data due to characteristics of the processes employed  
in its collection, manipulation, analysis, and/or presentation. 

 
Variability among meta-analyses on a common topic, while not usually as dramatic as the case of 
mastery learning just described, is not that uncommon. An example that is closer to home 
involves the effectiveness of technology use in classrooms compared with no technology use, a 
topic of lively debate over the years (e.g., Clark, 1983, 1994). Rana Tamim and her colleagues at 
the Centre for the Study of Learning and Performance (Tamim, Bernard, Borokhovski, Abrami 
& Schmid, 2011) published a second-order meta-analysis on technology integration in education 
entitled “What forty years of research says about the impact of technology on learning: A 
second-order meta-analysis and validation study.” John Hattie does something very similar over 
a very wide range of educational variables in his 2009 book entitled Visible Learning: A 
Synthesis of over 800 Meta-Analyses Relating to Achievement. In the Tamim et al. study, 25 
meta-analyses were selected from a larger number of meta-analyses comparing technology use in 
the treatment to no technology use in the control. Meta-analyses were selected using two criteria: 
1) moderate and high-quality meta-analyses; and 2) those with minimal overlap of primary 
studies. Across the 25 meta-analyses, average effect sizes ranged from a high of d+ = +1.12 to a 
low of d+ = –0.09, more than a 1.0sd difference. The average weighted effect size across all 25 
meta-analyses was d+ = 0.35, a modest but significant result.  

Tamim’s study included all years from 1986 to 2008, all grade levels, all content areas and all 
types of technology, but as Table 1 shows, even in a set of meta-analyses limited to K-12 math 
and science content with general technology use, there is still a range of outcomes. Studies from 
2005 to 2010 are fairly consistent, but in 2012 and 2013 there is a dip, presumably because these 
two reviews are best evidence syntheses. In terms of percentage of increase between the 
technology treatment group and the no technology control group, the range is fairly dramatic: 
from 1.6% at the lowest to 18.4% at the highest. Careful reading of these studies would be 
required to discern the sources of inconsistency among them, but on the surface it is hard to 
judge whether technology is fundamental or peripheral to teaching math and science in K-12 
education. This is just one of many examples of disagreement among meta-analyses which may 
lead to confusion over the true effectiveness of technology or other instructional interventions 
applied within classroom settings. 

Table 1: 
Meta-analyses since 2005 of achievement outcomes in science and/or math education. 

Date Meta-Analysis (technology focus) Level Area(s) Number of 
Effects/Studies 

Average 
ES 

2005 Liao et al. (computer-based instruction) E & S1 Science & 
Math 21 ES 0.52 

2007 Schroeder et al. (instructional technology) E & S Science 15 studies 0.48 
2007 Rosen & Salomon (technology-intensive) E & S Math 32 studies 0.46 
2010 Li & Ma (general technology) E & S Math 85 ES 0.28 
2012 Slavin et al. (general technology) E Science 17 studies 0.04-0.37 
2013 Cheung & Slavin (technology applications) E & S Math 74 studies 0.15 
1E = Elementary, S = Secondary. 
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While it is arguable that Tamim et al.’s result of d+ = 0.35 represents a reasonable average of 
these six studies, as well as the entire collection of 25, two things are lost in a second-order meta-
analysis: precision and detail. Precision is lost because averaging always reduces a set of data to 
a single number, especially when it is an average of averages. Considering variability (i.e., a 
standard deviation in the case of primary data) helps add back some detail (i.e., how wide the 
bulk of values is), but this is problematic in a second-order meta-analysis since variability is a 
function of sample size and there are two “sample sizes.” The number of primary studies per 
meta-analysis produces an underestimate of variability, and the number of individual participants 
per meta-analysis (i.e., the sum of all of the individual people) produces an overestimate of 
variability.  

Detail is lost because, across a set of meta-analyses, there are few common moderator variables 
that can add texture to the analysis or to a more precise breakdown of what works and does not 
work under different conditions (i.e., levels of moderator variables). Only first-order meta-
analyses can produce this detail from primary studies. The reduced precision and detail in 
second-order meta-analyses diminishes their effectiveness as vehicles for providing real evidence 
of effectiveness. John Hattie’s second-order meta-analyses referred to earlier also suffer from 
these same limitations. 

This leads me to my first conclusion about meta-analysis: 

Multiple systematic reviews/meta-analyses around a single research question can lead to 
considerable disagreement about the population they represent and the true state of the 
research question they are designed to answer. It is up to both creators and consumers to 
understand why this happens and to guard against misrepresentation and over-
interpretation. In this respect, meta-analysis is no different from other forms of research. 

As a final note to this section, there is considerable evidence that decisions regarding the choice 
and use of technology, or policy-making and practice in other important areas of education, are 
not based on research findings from meta-analyses or other sources (Lysenko, Abrami, Bernard, 
Dagenais, & Janosz, in press). Many educational decisions are based on a variety of factors—
cost, usability, politics, values, expert opinion, etc.—but research evidence is often not a major 
consideration. However, it should be as important, if not the most important, element in this mix. 
This, of course, is only the case when meta-analyses and other sources of evidence are carefully 
conducted and contain little bias. 

Types of Bias and How They Can Affect the Results of a Review 

Meta-analysis in education is about the study of research questions within populations of 
students, teachers, schools, school districts, or whatever unit of analysis is appropriate to the 
question. Thus, meta-analysis does explicitly what primary research intends to do inferentially: 
provide information about the population. Gene Glass invented (or reintroduced, see Pearson, 
1904) the methodology in the 1970s (Glass, 1976) to meet what many had come to perceive as a 
growing problem in educational research (actually in all research), namely the exponential 
proliferation of primary quantitative research and the limitations of the prevailing methods to 
summarize it. Since then, meta-analysis has become the standard way of summarizing and 
synthesizing quantitative research in a variety of areas, especially the health sciences. Meta-
analysis has solved many of the problems associated with the supposed subjectivity of narrative 
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reviews (e.g., the kind often found in the literature review of a dissertation or thesis) and the 
statistical bias associated with vote count methodology (Jackson, 1980). However, many 
challenges remain to ensure that meta-analysis itself is free of bias that can distort results and 
mislead practitioners.  

All researchers know that no methodology is completely immune to bias, but bias emanates from 
practice, not from conception. In other words, it is fairly easy to design a near perfect 
experimental study (Campbell & Stanley, 1963), but it is quite difficult to maintain its integrity 
while conducting it. A host of largely situational threats to internal validity can compromise the 
derivation of a causal connection between an independent and dependent variable. The same is 
true for meta-analysis—as a conception it is a significant advance over prior methodologies 
aimed at understanding the state of a population around a given question. But in practice, meta-
analysis can suffer from bias, usually unintended, from its onset to its completion. The second 
lesson I have learned since 1990 is about sources of bias. 

Every step in a systematic review/meta-analysis must be scrutinized for potential bias,  
from the formulation of the research question to the interpretation and discussion of the 

results, to ensure the quality and applied value of the final product. 

 
In the following sections, roughly based on the steps and procedures described by Cooper 
(2010), I will describe some of the sources of bias and how to reduce them, thereby increasing 
the odds that the final product will represent a fair assessment of the research question and that 
the result will be an accurate representation of the average effects and variability within the 
target population. 

Before moving on, I would like to clarify the terms systematic review and meta-analysis, as they 
are not necessarily synonymous. Within current thinking, all reviews should be systematic, 
whether they culminate in a meta-analysis or not. A systematic review is a summary of the 
research literature, either quantitative or qualitative, which 1) uses explicit, replicable methods to 
identify relevant studies, and 2) uses objective and replicable techniques to analyze and 
summarize those studies. The goal of any systematic review is to limit bias in the identification, 
evaluation and synthesis of the body of relevant studies that address a specific research question.  

Some researchers use the term “meta-analysis” to refer only to the quantitative summaries used 
in a systematic review, while others use it more broadly. Therefore, a systematic review need not 
include a meta-analysis or quantitative synthesis, but to be inclusive, a meta-analysis should 
emanate from a systematic review. A systematic review could conceivably include qualitative 
studies along with quantitative studies, so some of the stages I will describe apply to both forms 
of data. However, since this paper is really about reaching statistical conclusions, I will use the 
terms systematic review and meta-analysis interchangeably. 

Formulating the problem. The questions posed in a systematic review help to focus 
attention on the goals of the research endeavor, the important variables that will be addressed and 
their relationship to one another. It is not necessary that a new systematic review conform to the 
questions that have been asked in previous efforts to synthesize literature, but it is important that 
an analyst specify how a new review departs from, updates, or goes beyond previous reviews. 
For instance, a review of the effects of laptop programs on achievement in 2nd and 3rd graders 
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may not necessarily represent similar treatment conditions summarized across other grade levels. 
Failure to clarify this distinction is not necessarily evidence of bias, but from the consumer’s 
perspective, it may lead to confusion and misapplication of the results.  

Similarly, inclusion/exclusion may differ from synthesis to synthesis and this may lead to 
divergent results. As an example, a study that admits very short duration studies (e.g., lab-based 
true experiments lasting less than one day) may produce very different results from one that 
excludes short studies and admits only standard-length courses (e.g., quasi-experimental one-
semester field studies). Neither is right nor wrong, they are just different. One way of examining 
these issues for potential bias is to compare the operational definitions across meta-analyses, if 
the researchers provide them. If they are not provided and the study is at variance with similar 
studies, buyer beware. 

In a carefully crafted systematic review, the problem statement and subsidiary  
inclusion/exclusion criteria should be clear and precise so that the reader will know  

if the procedures that follow will likely produce biased results. 
 

Searching the literature. This is arguably one of the most important aspects of 
conducting a systematic review/meta-analysis and may be compared to the data collection phase 
of a primary study. Considerable bias can be introduced at this stage. Common problems include: 
1) selective searches that ignore large bodies of potentially relevant literature (e.g., by using 
published articles only); 2) searches that use very different key words or that ignore the fact that 
some databases use specialized terms or controlled vocabulary; and 3) searches that are clearly at 
odds with the research question and/or the operational definitions that form the basis for 
including or excluding studies. It seems almost too obvious to state, but studies that are not found 
in searches, for whatever reason, cannot be selected for inclusion, so it is always preferable to 
over-search than to under-search.  

Publication bias is considered by some (e.g., Rothstein, Sutton & Borenstein, 2005) to be one of 
the most distorting aspects of systematic reviews. Publication bias occurs when there is 
systematic selection, usually unintentional, of studies that reside primarily at the positive end of 
the effect size continuum. It has long been recognized that research journals tend to publish more 
studies that find differences than studies that do not, especially differences that favor the research 
hypothesis. Since a systematic review aims to characterize the entire literature fairly, it is 
desirable to also find studies that produce no effect as well as studies that contain findings that 
are contrary to the anticipated outcomes of experimental paradigms (i.e., results that favor the 
control condition). There may be no such studies in the literature, but the odds suggest that there 
are, and if they are not found and included, the estimate of effect will tend to be biased.  

There are a number of graphical and statistical tools available to help judge publication bias (e.g., 
Borenstein, Hedges, Higgins & Rothstein, 2009), but it is often possible to read the search 
criteria and inclusion/exclusion rules in order to judge whether this form of bias is likely. 

A carefully crafted systematic review (meta-analysis) always contains multiple classes 
 of publication type—journal articles, gray literature (e.g., conference proceedings), 
dissertations, and theses, etc.—so as to avoid publication bias as much as possible. 
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Extracting effect sizes and coding study features. Effect size extraction is the process 
of locating and documenting descriptive or statistical test data (e.g., t-ratios) that will form the 
quantitative basis for effect size calculation. The basic equation for calculating an effect size is 

fairly straightforward
di =

XTreatment − XControl

SDPooled

⎛
⎝⎜

⎞
⎠⎟ , but the array of decisions that must be made 

about which effect sizes should be calculated and how they should be treated is challenging and 
takes a considerable amount of time and expertise. Research manuscripts are usually not as 
straightforward as one might expect. While they generally follow the same form (introduction, 
method, results, and discussion), complications almost always exist and often many extremely 
complex decisions need to be made. Here are just a few of the questions that arise that must be 
answered:  

Is there at least one comparison that fits the treatment/control definition? 

Is there at least one measure that meets the outcome definition? 

Are there enough available data to calculate an effect size? Are all sample sizes 
provided?  

Is a calculation equation available for these data? 

Are there pretest/posttests gain scores for which a correlation coefficient is needed? 

Can multiple effect sizes be calculated that are independent in terms of sample used? 

The following point is important. Dependency may arise out of repeated use of data from the 
same sample of participants when either multiple treatment and/or control conditions are present 
in the same study or when several outcome types (especially, with various measures for the same 
outcome type) are reported (Scammacca, Roberts, & Stuebing, 2013). Quite often, primary 
empirical research features more than one treatment condition, thus allowing for more than one 
comparison for effect size extraction. To avoid potential bias, an analyst should resist the 
temptation to uncritically make multiple comparisons, and instead choose one of the following 
three solutions: 1) select a comparison that is most representative of the research question; 2) 
calculate average effect sizes that derive from multiple comparisons; or 3) use several 
comparisons while statistically adjusting each resulting effect size (e.g., proportionally reducing 
the sample size of the group used repeatedly). A related concern exists for multiple assessments 
of the same outcome type (e.g., several exams or assignments) reported in the same study. 
Similar measures could be taken in that case with the obvious exception of option 3) above. No 
adjustment could possibly prevent bias associated with multiple effect sizes that are derived from 
the same participants assessed with several analogous but different tests. The other important 
issue is related to dealing with different types of outcomes in various primary studies included in 
a review. Surprisingly, there is an alarming tendency for some researchers to combine into a 
single average effect size outcomes that should not be aggregated, for example, achievement and 
attitude. This is just plain wrong. Whatever solution an analyst opts for to avoid dependency, it 
should be transparent and should be applied consistently across studies within the same review. 

One thing to look for in a review is the biasing effect of extreme effect sizes, both positive and 
negative. There are several possible reasons for unreasonably large effect sizes (i.e., generally 
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ones over ±3.0sd difference between the treatment and control means). First, data extracted from 
primary studies may contain errors caused either by the author of the original study or by the 
review coders. Second, effect sizes derived from pretest-posttest designs (sometimes called gain 
or change scores) can be too large if a pretest-posttest correlation is not available or cannot be 
estimated, or if the pretest is not used as a covariate to produce adjusted posttest means. 

Here is an example of the potentially distorting influence of outlying effect sizes drawn from the 
distance education literature (Shachar and Neumann, 2003). When it was published, this meta-
analysis was clearly at odds with other meta-analyses in that timeframe (Cavanaugh, 2013, see 
Table 11.1 on page 171). For the comparison between classroom instruction and distance 
education instructional conditions, they found an average effect size of d+ = 0.37 (k = 86) when 
other meta-analyses of that era were finding an average of around g+ = 0.00 (e.g., Bernard, 
Abrami, Lou, Borokhovski et al., 2004). As it turns out, Shachar & Neuman included an effect 
size of d = 2.87, not an outrageously large effect size, but much larger than the next six largest 
effect sizes, which ranged between d = 1.08 and d = 1.35. This anomalously large effect size may 
have contributed to the unusually high average effect size, but another unusual situation in their 
data might have played an even bigger role. This will be discussed in the up-and-coming section 
on synthesizing effect sizes.  

To illustrate the characteristics of a distribution of effect sizes without outliers, Figure 1 shows 
the collection (k = 879) from a recent meta-analysis of technology applications in higher 
education (Schmid, Bernard, Borokhovski, Tamim et al., 2014). Notice that effect sizes range 
between d = ±2.5, with no outlying effect sizes. The distribution is nearly normal, not overly 
skewed (skewness = 0.28) but slightly leptokurtic (kurtosis = 1.21). The unweighted mean is 
0.28 with a standard deviation of 0.56. The median and the mode are about 0.25. Seven outlying 
effect sizes between d = +2.68 and d = +8.95 were removed to achieve this level of symmetry. 

The basic principle here is to err on the side of conservatism so as to present results that are not 
skewed either positively or negatively and to know how the meta-analysis fits into the literature 
of previous meta-analyses. 

Study features, as the name suggests, are characteristics occurring across many studies in a 
review, which can be used as moderator variables as the analyst attempts to explain variability 
found among studies in the larger collection. As with other aspects of a review, study features 
should be aligned with the purposes of the research question and with the unique characteristics 
of the literature under review. Study features can be either categorical (e.g., subject matter) or 
continuous (e.g., year of publication) and generally fall into four major categories: publication 
features (e.g., publication source), methodological features (e.g., research design), demographic 
features (e.g., grade level) and/or substantive features (e.g., technology type, instructional 
technique).  

While the previous discussion about coding errors in effect size extraction applies to study 
features, as the analyst moves into the analysis phase, another aspect of potential bias arises: bias 
due to confounding of different moderator variables (Lipsey, 2003). Confounding has the same 
general meaning here as it does with respect to primary studies—elements of one moderator 
variable that overlap another moderator variable so as to cloud the interpretation of both. 
However, in meta-analysis, confounding is more insidious because it cannot be controlled for 
and is undetectable unless there is sufficient statistical power to conduct the equivalent of multi-



	   	   CJLT/RCAT	  Vol.	  40(3)	  

Identifying	  and	  Reducing	  Bias	  in	  Meta-‐analysis	   9 

way analysis of variance or multiple regression. A significant interaction term signals the 
presence of bias due to confounding. 

 

 

Effect	  Size	  

Figure 1. Histogram of 879 unweighted effect sizes based on achievement outcomes. 
From Schmid, Bernard, Borokhovski, Tamim et al. (2014) Computers & Education. 

Consider this situation: the levels of two moderator variables, research design and length of 
treatment, are both significantly greater that zero. The tendency might be to interpret each of 
these independently, but upon conducting a two-way analysis, it is found that the average effect 
size for true experimental short-term studies (e.g., less than a month long) is significantly higher 
than the average effect size for quasi-experimental long-term studies (e.g., full semester). 
Knowing about this relationship (i.e., confound), the analyst can no longer argue for the 
significant differences in the variables treated independently. Unfortunately, there may be many 
such confounds in a meta-analysis with many coded moderator variables and not enough 
statistical power to investigate them all in the way just described. 

Errors in effect size extraction and study feature coding, made repeatedly over  
an entire meta-analysis, can lead to a significant degree of systematic bias.  

Carefully designed extraction and coding rules can help prevent this,  
but applying the rules consistently is of utmost importance. 

 
Three additional recommendations are directed towards researchers of primary studies who wish 
to have their research included in meta-analyses: 1) describe both the treatment and control 
conditions as thoroughly as possible; 2) describe methodological, demographic and substantive 
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characteristics as thoroughly as possible so that they can be coded as moderator variables; and 3) 
if requested and if it is available, supply missing information to meta-analysts. Remember that a 
meta-analyst is a “prisoner of the past” and therefore unable to include information in a meta-
analysis that is not in the primary literature. 

Methodological quality. The What Works Clearinghouse (WWC, U.S. Department of 
Education) has among the highest evidence standards, admitting only true experiments and high-
quality quasi-experimental studies into its recommendations to practitioners. For the WWC, 
controlling bias resulting from threats to internal validity is a predominant concern, nearly to the 
point of obsession. Internal validity—controlling for sources of bias that create plausible 
alternatives to the research hypotheses—trumps external validity (i.e., matching the conditions 
that are extant in practice so that results can be generalized). However, it is arguable in education 
that a more balanced approach is desirable, and failure to consider whether primary studies map 
onto real instructional conditions is a form of bias in itself. If highly controlled results from 
laboratory studies say nothing about the expectations of practitioners working in real classrooms, 
such results will tend to misrepresent reality.  

Abrami and Bernard (2006) argued that carefully constructed “field experiments” represent the 
best hope for balancing internal validity and external validity. In a subsequent article, Abrami & 
Bernard (2013) further argued that recognizing the potentially biasing methodological flaws in 
field experiments does not necessarily mean that they cannot be dealt with in meta-analysis. 
Primary studies can be rated on quality scales, such as Valentine & Cooper’s 2008 Study DIAD 
(Study Design and Implementation Assessment Device), and then either tested for bias or 
adjusted statistically to minimize bias. Methodological study quality, then, is treated as a 
moderator variable rather than an exclusion criterion. An example of statistical adjustment of this 
type can be found in Bernard et al.’s 2009 study of interaction treatments in distance education.  

Concerns about bias introduced by compromises to methodological study quality  
should be balanced against similar concerns about the non-representativeness  

of research findings derived from highly controlled “laboratory” studies,  
which itself is a form of bias. 

 
Synthesizing effect sizes. It is at the quantitative synthesis stage that a systematic review 

truly becomes a meta-analysis. Synthesis here refers to combining a set of effect sizes around a 
given research question using a measure of central tendency (usually a mean or median) and 
variability (measure of heterogeneity). It is entirely possible that an analyst might conclude that 
studies in a collection are so different that they cannot be synthesized, in which case a narrative 
review might be undertaken. Generally speaking, however, the intent is to provide a single 
overall estimate of the average effect size in the population.  

Two analytical models, the fixed effect model and the random effects model, are appropriate for 
different circumstances. The fixed model is best used when all of the studies in the population 
are known and under scrutiny and are more alike than different in terms of question, sample, 
methodology, etc. The average, then, is a fixed-point estimate that is a true representation of the 
population parameter. The fixed model is used most commonly in health science reviews (e.g., 
drug testing) where all studies around a question are known and relatively uniform. 
Heterogeneity analysis is then conducted to determine if the average weighted effect size is a 
good fit to the data.  
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By contrast, the random model is appropriate when only a portion of the studies that make up the 
population can be included and the characteristics of the studies differ considerably, even though 
they are asking and answering the same question. Each study is then judged to be a random 
representative of a micro-population of like studies (Borenstein, Hedges, Higgins, & Rothstein, 
2009). This is almost always the case in the social sciences, including education, with the 
possible exception of so-called branded educational interventions, such as a set of replications 
conducted on a single educational product.  

The difference in the two models relates to how each deals with the relationship between within- 
and between-study variability. In the fixed model, only within-study variance (VWithin ) is included 

in the weights that are applied to each study during synthesis 
Wi =

1
VWithin

⎛
⎝⎜

⎞
⎠⎟ . In the random 

model, both within- (VWithin ) and average between-study variability (VBetween )  are included in the 

weights
Wi =

1
VWithin +VBetween

⎛
⎝⎜

⎞
⎠⎟ . Under the fixed model, between-group variability is summed as 

Cochrane’s QTotal (i.e., sum of squares) and tested for heterogeneity using the χ
2
(chi square) 

distribution with k – 1 degrees of freedom. Under the random model, this between-study 
variability is resolved into the weights so that no test of heterogeneity is performed. When there 
is no heterogeneity in the fixed model (QTotal ≈ 0) , the two models produce the same result. 
However, under certain conditions, the differences can be striking. 

Here is an example of poor model selection. Under the fixed model, a large-sample high negative 
effect size brings the overall average effect size down, while the random model provides a more 
reasonable solution. A forest plot of data from a study of technology treatments in higher 
education is shown in Figure 2. Group A is the treatment condition and Group B is the control 
condition. There are 15 effect sizes and their sample sizes are shown on the left side of the 
figure. In the center, the horizontal lines mark the upper and lower boundaries of the 95th 
confidence interval (notice that larger samples have shorter lines and smaller samples have 
longer lines) and the dot in the center is the effect size for each study. The 0.00-point marks “no 
effect” and effect sizes on the left are negative and those on the right are positive. The relative 
weights under the fixed and random analytical models are on the right side of the graphic. Look 
at the topmost study. It is a relatively large study and its effect size is negative (< -0.50). Because 
it has the largest sample size, it gets the largest weight of all of the studies (18.19% under the 
fixed model and 7.93% under the random model) and its influence produces a fixed effect 
average weighted effect size of d+ = 0.30, compared with d+ = 0.45 under the random model. If 
the analyst had incorrectly applied the fixed effect model, the average weighted effect size would 
have been 0.12sd lower compared with the random model. In other words, because of that very 
large-sample negative effect size (sometimes referred to as a high-leverage study), the fixed 
model underestimates the effect of the treatment.  
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Figure 2. Forest plot showing the biasing effect of a large sample study with a large negative 
effect size. 

Returning to the Shachar and Neumann study described earlier, we see the reverse of the 
example just presented. One of the contributors to the unusually high average effect size of d+ = 
0.37 in the Shachar & Neumann meta-analysis is a primary study with an effect size of d = 1.22, 
not especially large compared to three other studies of that magnitude, but possessing a very 
large sample size of more than 2,000 participants. As in the previous example, this study is likely 
to have exerted a large influence on the outcome, except in a positive direction. Since Shachar 
and Neumann used the fixed effect model, this over-influential study is amplified in the final 
result. 

Selecting and applying the right synthesis model in meta-analysis is important for  
correctly estimating the average effect size in the population.  

Even when the random effects model is used, heterogeneity should be reported. 
 

Interpreting and discussing the results. It is nearly axiomatic that if the results are 
biased then the interpretation and discussion of them will be biased. However, it is also the case 
that the discussion can be biased even if the results are not. Perhaps the most common form of 
this is the result of selectivity: focusing on results that demonstrate points of interest to the 
analyst, while ignoring or downplaying results that might be of greater interest to the reader. For 
instance, in a particular meta-analysis that finds an overall average effect size of d+ = 0.15 for 50 
studies, the author focuses on the results of a moderator analysis that finds an average effect size 
of d+ = 0.48 for 10 short-duration studies, but an average effect size of d+ = 0.05 for the 
remaining 40 studies conducted in one-semester classrooms. To focus primarily on the short-
term studies to the exclusion of the longer-term studies would be misleading. 

Another potential distortion of interpretation is to attribute either too much or too little 
importance to average effect sizes. For instance, it comes as no surprise that introducing a laptop 
program to an entire school district is expensive, requiring considerable support and training at 
additional expense. But what if the average effect size related to such an introduction is d+ = 
0.30, a modest increase in achievement outcomes? While this average effect would likely be 
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significantly different from zero and possibly judged to be of importance to the analyst, 
policymakers might rightly question whether the modest improvement justifies the expense. By 
contrast, the same average effect size for the introduction of a relatively inexpensive treatment, 
such as a new computer-based early literacy software application, might be heralded as an 
important and affordable addition to the curriculum.  

Dissemination and publication of results. In my view, there is—or should be—a code 
of ethics that applies to the publication of meta-analyses. This code begins with the analyst and 
stretches beyond to journal editors and then to journal reviewers, who should also be 
knowledgeable of these methodologies. A biased meta-analysis may enter the literature simply 
because editors and reviewers are unaware of best methodological practices and therefore unable 
to spot aspects of the meta-analysis that might contribute to this bias. 

Meta-analysts must not work in a vacuum. They should be fully aware of the meta-analyses that 
have preceded theirs, the scope of the literature, the important methodological and substantive 
issues, and the previous results achieved before they embark on a new effort. Unless there are 
methodological issues with a prior review, and the new review is intended to clarify or supersede 
that work, a mere replication of a previous meta-analysis is a waste of time and effort. This does 
not apply to updates or extensions of existing work, especially in rapidly evolving fields such as 
educational technology, because these can serve to move the field forward and inform practice. 
In other words, a new meta-analysis should have something new to contribute.  

Conclusion 

Perhaps the most insidious bias that can exist is found in high-impact areas of study where 
economic, political, social, or scientific persuasion or other agendas can influence the primary 
literature that is the basis for a review and hence its results and interpretation. This is sometimes 
called agenda-driven bias and is most likely to occur when someone or some group (e.g., 
company, political party) has a considerable stake in the results. The most commonly 
recommended antidote to this form of biased persuasion is full disclosure of any conflicts of 
interest, but the results of a 2011 study described by the Cochrane Collaboration 
(http://www.cochrane.org/news/blog/how-well-do-meta-analyses-disclose-conflicts-interests-
underlying-research-studies) found that this is rarely done in medical research. This is indeed 
discouraging, but is not likely to be a great problem in education, since public granting/ 
contracting agencies or private foundations support most funded reviews. However, it is worth 
noting that when all or a preponderance of studies in a review come from the same research 
team, which is also performing the meta-analysis, agenda-driven bias must at least be considered. 

Even systematic reviews that examine studies in the qualitative literature (e.g., meta-syntheses) 
should be scrutinized for potential sources of bias. Attempts to synthesize this literature are 
relatively new, compared to meta-analysis (Bethel & Bernard, 2010), and so methodologies are 
not as well developed and there is not as much consensus on the standards for rigor as in the 
quantitative literature. There is, however, a substantial methodological literature for primary 
qualitative studies, detailed in many methods books (e.g., Cresswell, 2009), which should have 
something to contribute to the conduct and evaluation of meta-syntheses. As for literatures that 
contain both quantitative and qualitative primary research, there have been several attempts (e.g., 
Abrami, Bernard, & Wade, 2006; Pettigrew & Roberts, 2003) to create hybrid or mixed review 
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methodologies. However, synthesizing quantitative and qualitative results is by no means an easy 
or straightforward task. 

There is a convincing case to be made for the exercise of due diligence by analysts, journal 
editors, reviewers and consumers alike. Serious bias can occur and in fact sometimes skews the 
results in important topic areas. Since meta-analyses are given more weight than individual 
studies, biased results can represent a significant setback to theory and/or practice in important 
areas of education. It would be naïve to suggest that all reviews around a given topic should 
concur, but whether they do or do not, we should strive to ensure that the review methods, the 
report of results, and their final interpretation and discussion are as unassailable as possible. 
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