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Abstract 

Online higher education provides exceptional flexibility in learning but demands high self-
regulated learning skills. The deficiency of self-regulated learning skills in many students highlights the 
need for support. This study introduces a confidence-based adaptive practicing system as an intelligent 
assessment and tutoring solution to enhance self-regulated learning in STEM disciplines. Unlike 
conventional intelligent tutoring systems that depend entirely on machine control, confidence-based 
adaptive practicing integrates learner confidence and control options into the AI-based adaptive 
mechanism to improve learning autonomy and model efficiency, establishing an AI-learner shared 
control approach. Based on Vygotsky’s zone of proximal development (ZPD) concept, an innovative 
knowledge tracing framework and model called ZPD-KT was designed and implemented in the 
confidence-based adaptive practicing system. To evaluate the effectiveness of the ZPD-KT model, a 
simulation of confidence-based adaptive practicing was conducted. Findings showed that ZPD-KT 
significantly improves the accuracy of knowledge tracing compared to the standard Bayesian 
Knowledge Tracing model. Also, interviews with experts in the field underlined the potential of the 
confidence-based adaptive practicing system in facilitating self-regulated learning and the 
interpretability of the ZPD-KT model. This study also sheds light on a new way of keeping humans 
apprised of adaptive learning implementation. 

Keywords: adaptive practicing, confidence-based assessment, knowledge tracing, question sequencing, 
self-regulated learning, wheel-spinning 

Résumé 

L’enseignement supérieur en ligne offre une flexibilité exceptionnelle dans l’apprentissage, mais 
il exige des compétences élevées en termes d’apprentissage autorégulé. Le manque de compétences 
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d’apprentissage autorégulé chez de nombreuses personnes étudiantes met en évidence la nécessité du 
soutien. Cette étude présente un système de pratique adaptative basé sur la confiance en tant que 
solution intelligente d’évaluation et de tutorat pour améliorer l’apprentissage autorégulée dans les 
disciplines STIM. Contrairement aux systèmes de tutorat intelligents conventionnels qui dépendent 
entièrement du contrôle de la machine, la pratique adaptative basée sur la confiance intègre la confiance 
de la personne apprenante et les options de contrôle dans le mécanisme adaptatif basé sur l’intelligence 
artificielle (IA) pour améliorer l’autonomie d’apprentissage et l’efficacité du modèle, établissant ainsi 
une approche de contrôle partagé entre l’IA et la personne apprenante. Basés sur le concept de zone de 
développement proximal de Vygotsky (ZPD), un cadre et un modèle innovant de traçage des 
connaissances appelé ZPD-KT ont été conçus et mis en œuvre dans le système de pratique adaptative 
basé sur la confiance. Pour évaluer l’efficacité du modèle ZPD-KT, une simulation de pratique 
adaptative basée sur la confiance a été effectuée. Les résultats ont démontré que le modèle ZPD-KT a 
considérablement amélioré la précision de la traçabilité des connaissances par rapport au modèle 
traditionnel de traçage des connaissances bayésiennes. De plus, les entrevues avec des experts dans le 
domaine ont souligné le potentiel du système de pratique adaptative pour faciliter l’apprentissage 
autorégulé et l’interprétabilité du modèle ZPD-KT. Cette étude a également mis en lumière une nouvelle 
façon de tenir les humains informés de la mise en œuvre de l’apprentissage adaptatif. 

Mots-clés : apprentissage autorégulé, évaluation basée sur la confiance, pratique adaptative, rouet, 
séquence de questions, traçage des connaissances 

Introduction 

Online education has become an important educational paradigm in the field of higher education. 
Self-paced online learning provides increased flexibility because learners can study anywhere, anytime, 
and at their own pace. Yet, self-paced online learning faces inherent challenges due to reduced 
synchronous interaction when learners study independently and asynchronously (Yan et al., 2020). 
Disciplines such as science, technology, engineering, and mathematics (STEM) demand high self-
regulated learning (SRL) skills so that learners are able to self-monitor their learning progress, evaluate 
their knowledge proficiency, identify learning gaps, regulate learning efforts, and seek targeted support 
(Nuryadin et al., 2024; Schunk & DiBenedetto, 2020). 

Previous research has identified a significant positive relationship between SRL strategies and 
online academic success (Broadbent & Poon, 2015; Nuryadin et al., 2024; Wong et al., 2019). Self-
regulated learning skills become even more critical for self-paced online learning, which requires high 
levels of learner autonomy and has low levels of teacher presence (Lehmann et al., 2014). However, not 
every learner has adequate SRL skills. Learners are generally inaccurate when monitoring their learning 
without additional instruction (Viberg et al., 2020). In higher education, researchers have found that 
instructors tend to focus on course content, providing limited opportunities for scaffolding SRL 
(Broadbent, 2017; Jansen et al., 2019; Zimmerman, 2020). Hence, it is imperative to provide learners 
with a means to facilitate their SRL in self-paced online STEM higher education. Yan et al. (2022) 
argued that adaptive practicing could be an effective tool to meet this need. As a type of formative 
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assessment, adaptive practicing selects exercise questions based on individuals’ knowledge states. 
Hence, it can assess learners’ knowledge levels, identify learning weaknesses, and provide instructive 
feedback and remedial materials for learning. 

Adaptive practicing can use computed algorithms (Manouselis et al., 2011) to realize two core 
functions: knowledge tracing and question sequencing. Knowledge tracing estimates and tracks learners’ 
knowledge proficiency based on their responses to questions. Question sequencing decides the optimal 
knowledge component and the exercise to practice with each time to obtain the maximum learning gain. 

One limitation of previous knowledge tracing models is that they mainly rely on the answer 
correctness collected during the assessment (Clement et al., 2015; Pelánek, 2017). However, if certain 
question types such as multiple-choice are used for assessment, it is hard to discern learners who guess 
correctly from those who actually know the answer (Novacek, 2013). As Clement et al. (2015) pointed 
out, answer correctness alone may not tell whether an exercise is effective, but with certain side 
information, it could. Regarding side information, Holstein et al. (2020) stated that humans may have 
relevant information to which adaptive learning systems are likely blind. Thus, these researchers have 
posited that considering learners’ subjective feelings of knowledge in adaptive learning systems can 
more efficiently determine whether their answers reflect actual knowledge levels. For example, Novacek 
(2013) suggested a confidence-based assessment in which learners select the answers they believe are 
correct and indicate their confidence in their selections. 

Another limitation of previous adaptive learning systems is that instructional sequencing usually 
assumes exclusive machine control but seldom considers learner control. In the context of adaptive 
practicing, learners usually do not have any control over which knowledge component or question they 
should practice with next time. Learner control is related to the earlier conceptual development of self-
directed learning in distance education, stressing learning autonomy and personal responsibility for the 
learning process (Sorgenfrei & Smolnik, 2016). According to self-determination theory (Deci et al., 
1991), learner control can enhance learning motivation by strengthening the human need for 
autonomy—the desire to self-initiate, self-control one’s behaviour, control activities, and freely pursue 
one’s decisions. Research has demonstrated the importance of learners’ perceived autonomy to their 
motivation and academic performance (Hsu et al., 2019; Luo et al., 2021; Sorgenfrei & Smolnik, 2016). 

Thus, considering learner inputs on knowledge judgement and question sequencing in the 
adaptive practicing model could increase model effectiveness and promote learning autonomy and 
engagement. Despite these potential advantages, few studies have explored how these learner inputs are 
factored into the AI agent’s decision-making. To the best of our knowledge, studies have not sufficiently 
investigated how learner control could be considered in an adaptive practicing model design. As noted 
by Doroudi et al. (2019) in a review paper, AI agents could consider learner judgements and control 
during decision-making, but such a form of shared control has not been investigated in the context of 
instructional sequencing because it is challenging to address the subjectivity of learner judgement and 
control. To fill this research gap, our study investigated how to incorporate learner confidence in the 
adaptive practicing mechanism to design an AI-learner shared control model. Through simulation, 
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significant improvement was found in the effectiveness of such an AI-learner shared control model 
compared to the standard Bayesian Knowledge Tracing (BKT) model (Corbett & Anderson, 1994). 

This paper begins by reviewing previous work related to human-AI collaboration approaches and 
confidence-based assessment. Then we discuss how we designed a confidence-based adaptive practicing 
system and a ZPD-based knowledge tracing framework and model which were built in response to the 
research gaps identified by our literature review. We then present the findings of the evaluation of our 
model which was conducted through a simulation exploring the effectiveness of the model. Finally, the 
advantages and limitations of the model design are discussed. 

Related Work 

First, we reviewed what has been done regarding human-AI collaboration approaches designed 
for adaptive learning. Then, past studies investigating how learners’ confidence is incorporated into 
assessment were examined. 

Human-AI Collaboration Approaches 

Human-AI collaboration stresses that humans and AI are partners in achieving the overall goal, 
and each party contributes according to its strengths and weaknesses (Brusilovsky, 2024). The general 
ideas of learner control have been extensively explored in the educational field and have formed one of 
the foundations of SRL (Bjork et al., 2013). In the context of online learning system design, learner 
control refers to certain learning process features, such as control over the path, sequence, flow, and so 
forth (Sorgenfrei & Smolnik, 2016). Sorgenfrei and Smolnik’s analysis demonstrated that learner control 
over variables such as time, pace, navigation, and design is associated with improved learning outcomes. 

Some studies have considered how to keep humans in the loop of AI-based adaptive learning. 
Brusilovsky (2024) summarized four approaches of AI-learner shared control for adaptive content 
selection. One approach is through the editable learner model (Weber & Brusilovsky, 2001). In Weber 
and Brusilovsky’s ELM-ART system, the AI determines the state of learner knowledge and displays it to 
the learner, while the learner has a chance to correct obvious errors. The second approach is called 
ranking-based human-AI collaboration (Rahdari et al., 2022), whereby AI does the work of careful 
selection and ranking, but the learner has the final say in selecting the most relevant content item. A 
third approach is adaptive navigation support (Brusilovsky, 2007) where AI works in the background to 
decide the best links to appropriate content, but AI advice is provided in a less direct form, and the final 
control is in learners’ hands. The fourth approach is that learner control is enabled during the decision-
making process. For example, the system can allow the user to choose one of the available content 
selection algorithms (Ekstrand, 2015) or let the learner control some parameters of the recommendation 
process (Papoušek & Pelánek, 2017). 

These approaches show some possibilities of how AI-learner shared control can be realized in 
adaptive learning. However, as Brusilovsky (2024) pointed out, content selection in the first three 
approaches is mainly done by AI agents alone, while learners are only involved at the beginning for 
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learner model adjustment or at the end for selecting content from what is recommended by AI agents. 
The fourth approach requires extensive knowledge of learners in computing algorithms and adds 
extraneous cognitive load for learning. The limitations of previous approaches call for a more 
straightforward and effective AI-learner shared control model for adaptive practicing. 

Confidence-Based Assessment 

Multiple-choice questions remain prevalent in traditional assessments, but their reliance on 
binary scoring (correct/incorrect) fails to distinguish between mastered knowledge and guesswork, a 
limitation widely acknowledged in current pedagogical research (Preheim et al., 2023). To address this, 
confidence-based assessment techniques combine the answer selection with learners’ perceived certainty 
levels (e.g., not sure, partly sure, and sure), enabling a nuanced evaluation of knowledge mastery 
(Gardner-Medwin & Curtin, 2007; Remesal et al., 2023). For instance, Smrkolj et al. (2022) 
demonstrated that this approach improves the reliability of assessments by penalizing confidence errors 
and rewarding accurate self-awareness. Inspired by this confidence-based assessment technique, we 
proposed integrating learners’ confidence in the adaptive practicing model to improve the knowledge 
tracing efficiency. 

Our Approach to an AI-Learner Shared Control Model Design 

To design an AI-learner shared control model, we first determined what learner inputs should be 
considered in the adaptive practicing model. We then describe the theories that supported our model 
design. 

Learner Input 

The idea of increasing interaction between humans and machine-learning algorithms is to make 
machine learning more accurate or to obtain the desired accuracy faster through learning with humans 
(Mosqueira-Rey et al., 2023). Inspired by confidence-based assessment techniques, we realized that 
answer responses combined with learners’ perception of their knowledge levels (e.g., confidence or 
difficulty rating) could potentially make knowledge tracing more efficient. For example, if learners skip 
a question and indicate it is too easy, or if a learner answers a question correctly and indicates full 
confidence, this learner likely has mastered the knowledge. The integration of such learner inputs could 
be an algorithmic advantage compared to the traditional knowledge tracing models, such as the BKT 
model (Corbett & Anderson, 1994), which typically needs many questions to train the model because of 
the parameters of guessing and slipping (careless mistakes) considerations. Therefore, we included 
confidence rating and question skipping as learner inputs in the adaptive practicing model. 

Confidence Rating 

After learners selected an answer to a multiple-choice question, they could indicate their 
confidence level on a scale ranging from no confidence to full confidence, with intermediate levels of 
low, moderate, and high confidence. 
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Question Skipping 

Our model gave learners the option to skip a question if they felt it was too easy or too hard. 
Learners’ question-skipping choice could override the system’s decision on question selection to avoid 
boredom or frustration. Also, time would be saved by skipping ineffective exercises. We argue that 
question-skipping is also based on learner confidence in the knowledge tested by the question. 

Supporting Theories for the Model Design 

The design of our adaptive practicing model was based on the following learning theories. 

Knowledge Space Theory 

Knowledge space theory (Doignon & Falmagne, 1999) is a theoretical framework which 
proposes that every knowledge domain can be represented in terms of a set of knowledge components 
(KCs). Knowledge states represent the subset of KCs a learner has mastered or learned. Each KC is 
assessed by a set of questions. The KCs in a knowledge domain usually are interrelated or have 
prerequisite relationships. Our study treated course learning outcomes as the KCs. So, the adaptive 
practicing model considered the prerequisite relationships among learning outcomes when selecting the 
optimal questions for practicing. 

Zone of Proximal Development 

The concept of zone of proximal development (ZPD) by Lev Vygotsky refers to a zone where a 
learner can complete tasks with assistance but not independently (Vygotsky, 1978). According to 
Vygotsky, concrete growth can only occur in the ZPD, and learning is most effective when timely 
support is provided. Traditional self-assessment usually contains a set of exercises without any adaptive 
mechanism. With such a one-size-fits-all assessment approach, some learners may feel under-challenged 
or bored, while others may feel over-challenged or frustrated. According to Vygotsky’s theory, this 
problem stems from the fact that each learner has a different ZPD at any given time (Vainas et al., 
2019). The adaptive practicing model in this study attempted to mitigate this problem by tracking 
learners’ ZPD and keep them practicing in their ZPD. As a well-known and vastly researched concept in 
educational psychology, ZPD has laid the foundation for personalized learning, and some ZPD-based 
learning tools have been developed to sequence instructional content (Vainas et al., 2019). 

Dynamic Difficulty Adjustment 

Dynamic difficulty adjustment is a technique often used in video games to automatically adjust 
the game’s difficulty level in real time based on the player’s ability (Zohaib, 2018). In the field of 
education, this technique can be borrowed to adjust the difficulty of learning materials based on 
learners’ skill levels to keep them engaged. This technique can be instrumental in online environments 
where it is difficult to provide personalized feedback and support to individual learners. Inspired by this 
technique, adaptive practicing can be realized through different adaptive methods such as modifying the 
difficulty level of the exercises, changing the sequence of the questions, or adjusting the pace of the 
practice. 
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A New Adaptive Practicing System and Its Model Design 

This study investigated a confidence-based adaptive practicing (CAP) system and a ZPD 
Knowledge Tracing (ZPD-KT) model design. Inspired by the Intelligent Tutoring System’s four-
component structure (Nkambou et al., 2010), a six-module architecture for CAP design was developed 
(Figure 1). The six modules included the user interface, domain model, knowledge tracing, question 
sequencing, wheel-spinning detection, and system self-learning. 

Figure 1 

The Architecture of the Confidence-Based Adaptive Practicing System 

 

User Interface Module 

The user interface of CAP consists of essential components such as question body, options, 
feedback, and buttons for navigation and responding (Figure 2). Unlike conventional practicing systems, 
the CAP interface includes two unique components: (a) a question skip option, along with answer 
options whereby if a question is too hard or too easy, a learner could choose to skip it, and (b) a learner 
confidence rating, which allows learners to select their confidence level in the answer. After selecting an 
answer, learners are asked to rate their confidence using a Likert scale (1 = no confidence to 5 = full 
confidence). 
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Figure 2 

Example of the Learner Interface of the Confidence-Based Adaptive Practicing System 

 

Domain Model 

As illustrated in Figure 1, the CAP system was built on the domain model which describes four 
types of information: (a) the KCs covered by the practicing, (b) the knowledge learning paths from the 
initial state to the final state (Figure 3), (c) the dependencies among those KCs, and (d) the exercises 
(including question item, options, correct answer, and feedback) corresponding to each KC. In higher 
education, learning outcomes are generally the competencies that learners should master, typically 
expressed in Bloom’s taxonomy. For the purposes of this study, learning outcomes were regarded as 
KCs. 

Knowledge Tracing Module 

The knowledge tracing module detects a learner’s knowledge state and tracks their changes 
during practicing. Relative to the ZPD, four cognitive statuses on a KC were defined in this study:  

• mastered: a KC has been learned (above the ZPD) 
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• in-learning: a KC is being learned (in the ZPD) 
• unlearnable: beyond a learner’s ability (below the ZPD) 
• wheel-spinning: stuck or unproductive struggle 

Wheel-spinning is a learning phenomenon analogic to a car stuck in snow or mud––the wheels will spin 
without getting anywhere despite devoting effort to moving (Beck & Gong, 2013). 

Figure 3 shows one example of a learner’s knowledge states at a given time during practice for 
learning a topic. There are nine learning outcomes (LOs) in this topic: A, B, C, D, E, F, G, H, and I, each 
mapping to an exercise set (i.e., exercises a, b, c, d, e, f, g, h, and i). Some prerequisite relationships exit. 
For example, LO-B is a prerequisite for LO-E, which is a prerequisite for LO-F and LO-G. 

In Figure 3, the KCs in green (A, B, C, D, and E) are mastered; KCs in yellow (G and H) are in-
learning; the KC in grey (I) is unlearnable; and the KC in red (F) indicates wheel-spinning. 

Figure 3 

An Example of a Learner’s Knowledge States 

 
Note. Letters A through I in the figure indicate learning outcomes for this topic. Letters E-a through E-i indicate the sets of 
exercises that map to the respective learning outcomes. 
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Learners’ ZPD usually move to higher levels as they learn or practice. Figure 4 shows an 
example of how a learner’s ZPD moved from one level to the next, demonstrating an increase in ability. 
Since learning is a dynamic process, the knowledge tracing module needed to track learners’ ZPD based 
on their responses in order to present optimal questions for maximum practice effectiveness. That is why 
we chose a ZPD-KT framework and model. 

Figure 4 

Example of a Learner’s Changing Zones of Proximal Development as Determined by Practice Iteration 

 
Note. L1 is Level-1; L2 is Level-2; L3 is Level-3; T1 is Time-1, T2 is Time-2; T3 is Time-3. 

Zone of Proximal Development Knowledge Tracing Framework 

To use the ZPD concept for knowledge tracing purposes, nine ZPD levels corresponding to 
learners’ answer correctness and confidence rating were defined. These nine ZPD levels include: above, 
ceiling, upper, mid-upper, mid, mid-lower, lower, flooring, and below. Each ZPD level is associated 
with a range of mastery values. Table 1 depicts the mapping relationships between learner responses and 
the ZPD levels. For example, if the answer was correct and the confidence was rated high, the learner’s 
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ZPD level would fall under ceiling and the mastery value would be in the high range [0.80–0.95]. It is 
important to note that the ZPD level determined by learners’ responses and confidence rating comes 
with some subjectivity due to reliance on learners’ reported perceptions rather than objective measures. 

Table 1  

Learner ZPD Categorized by Correct Answers, Confidence Rating, and Mastery 

Zone Answer correctness Confidence rating Mastery range Midpoint mastery 

Above ZPD1 True Full 0.95–1.00 0.975 

Ceiling ZPD True High 0.80–0.94 0.875 

Upper ZPD True Moderate 0.65–0.79 0.725 

Mid-upper ZPD True Low 0.55–0.64 0.600 

Mid ZPD True/False No 0.45–0.54 0.500 

Mid-lower ZPD False Low 0.35–0.44 0.400 

Lower ZPD False Moderate 0.20–0.34 0.275 

Floor ZPD False High 0.05–0.19 0.125 

Below ZPD2 False Full 0.00–0.04 0.025 

Note. ZPD = zone of proximal development. 1If a question was skipped because it was too easy or mastered, the question also 
fell into the category of above ZPD. 2If a question was skipped because it was too hard or the learner got stuck, the question 
also fell into the category of below ZPD.  

Zone of Proximal Development Knowledge Tracing Algorithm 

Based on the ZPD-KT framework, a ZPD-based knowledge tracing algorithm was created. The 
algorithm first examines a learner’s response to a question (answer correctness and confidence rating), 
and then determines the ZPD level (Table 1). The midpoint of the mastery range of that ZPD level is 
then used as the newly observed mastery value (denoted in Equation 1 as masteryZPD). Because of the 
subjectivity of the confidence rating, we decided it would be more reliable to consider the historical 
trend of the mastery values. Therefore, the current estimated mastery value is calculated as shown in 
Equation 1: the average of the previously predicted mastery value and the current observed mastery 
value. Then, since the practicing system provides learners with feedback or remedial materials, a 
learner’s mastery value is predicted to increase by a learning rate (LR), as formulated in Equation 2. 

masteryEstimated[t] = (masteryPredicted[t-1] + masteryZPD[t]) / 2    (1) 

masteryPredicted[t] = masteryEstimated[t] + (1 - masteryEstimated[t]) x LR  (2) 

The ZPD-KT model is more transparent and interpretable to educators than some machine 
learning-based knowledge tracing models (e.g., BKT). Therefore, there would be a higher likelihood of 
it being adopted in a real-world teaching context. 
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Wheel-Spinning Detecting Module 

The wheel-spinning detecting module was designed to detect a learning situation where learners 
struggled unproductively with a KC. When feedback and remedial materials provided in the adaptive 
practicing could not help learners move forward, this module would alert the learners of wheel-spinning 
and suggest they ask for help from other sources, such as academic experts. Wheel-spinning happens 
when a learner keeps spending time on an unlearnable KC. Given that prerequisite relationships among 
KCs exist, a KC may be unlearnable because its prerequisite KCs have not yet been mastered. In such 
cases, the learner should be directed to the prerequisite KCs for practicing first. A learner is wheel-
spinning on a KC if the following two conditions are met: (a) a KC is detected unlearnable; and, (b) all 
its prerequisite KCs have been mastered. 

Question Sequencing Module 

The question sequencing module provides individual learners with the optimal question sequence 
to obtain the maximum learning gain at each practice opportunity. The optimal question presented to a 
learner is based on the learner’s knowledge state predicted in the knowledge tracing module. In the CAP 
system, question sequencing consists of two steps: (a) select the optimal KC from all KCs that are not 
mastered yet for practicing, and (b) select the optimal question from a question pool corresponding to 
the KC. The optimal KC selection is determined by three factors: (a) prerequisite relationships among 
KCs (the prerequisite KC should be practiced first); (b) the mastery level of each KC (the KC with a 
mastery level closer to upper ZPD should be practiced first in the CAP system); and (c) the Bloom’s 
taxonomy level of each KC (the KC with lower level should be practiced first). Equation 3 formulates 
the optimal score calculation for KCs by summing the score of each factor with a certain weight, 
expressed in the equations as kcScore. After a KC is selected, a question is chosen from a question pool 
corresponding to the selected KC by checking their difficulties against the KC mastery level and their 
practice history (as shown in Equation 4). The weights were initially set based on experts’ experience. 

kcScore = w1 x prerequisteScore + w2 x masteryLevelScore + w3 x BloomScore  (3) 

questionScore = w4 x difficultyMatchScore + w5 x practiceHistoryScore   (4) 

System Self-Learning Module 

Learning is a complex process. In the environment of adaptive practicing, there are many 
additional uncertainties. First, the learner confidence rating is somewhat subjective. For example, 
learners may be overconfident or underconfident in their knowledge level. Second, the prerequisite 
relationships among KCs could be hard or soft and sometimes challenging to quantify. In addition, the 
effectiveness of exercise questions for a particular KC can vary widely. Therefore, the cognitive status 
deduced by learners’ responses reflects a likelihood rather than certainty. For example, if learners 
answer a question correctly and indicate full confidence, it is likely that learners have mastered the 
knowledge, but it is still possible that this is not the case. To avert the subjectivity of learner confidence 
and improve the accuracy of knowledge tracing in the CAP, a system self-learning module was 
designed. This module aimed to optimize the LR (as shown in Equation 2) by analyzing learning data 
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continuously collected from the system. The expectation-maximization technique was used in the 
system self-learning module to find the maximum likelihood of the parameter, in this case, the LR. 

Module Evaluation 

It is crucial to evaluate the CAP system and the ZPD-KT model design for their effectiveness in 
tracing learners’ knowledge, selecting optimal exercise questions, and detecting wheel-spinning. Two 
evaluation phases were conducted: (a) interviews with experts to gain insights into the strengths and 
weaknesses of the model design, and (b) simulation of the model to test its effectiveness. 

Interview 

In the first phase, feedback was gathered by interviewing four experts: three in the field of 
computing for education and one in physics. These experts work at an online university and teach self-
paced courses in STEM disciplines. During the interview, we explained the purpose of this research 
project, demonstrated the CAP system, and explained the ZPD-KT model. All interviewees indicated 
they had already realized the SRL-related challenges in self-paced online education, and agreed that: 
(a) embedding such adaptive practicing activities in courses could be an effective solution to address this 
challenge for STEM disciplines; (b) the ZPD-based knowledge tracing framework and algorithm are 
easy to understand and make sense; and (c) incorporating learner confidence and learner control could 
help improve learner engagement and learning autonomy. The experts also offered some suggestions for 
design improvement. For example, some wondered whether the large language model AI technology 
could help instructors create exercise questions to reduce their workload, whether different question 
difficulty levels should be considered, whether the learning rates should be personalized for individual 
learners, and so forth. Based on this feedback, the model design was refined. 

Simulation 

In the second phase, a simulation of the CAP system and the ZPD-KT model was conducted. 
Running a simulation allows for thorough testing of its functionality before implementation. Simulating 
various scenarios allows potential flaws and issues to be identified and addressed in the design stage. By 
testing the system with different data inputs and user behaviours, it is possible to optimize the 
algorithms to make the design more effective, accurate, and robust. 

Simulation Setup 

The simulation was created in JavaScript for a web application. We simulated a computer 
science course with five learning outcomes (KCs) at different Bloom’s taxonomy levels (i.e., remember, 
understand, apply, analyze, evaluate, or create). Certain prerequisite relationships were set up for these 
learning outcomes. Each learning outcome mapped to a pool of exercise questions with different 
difficulty levels. A total of 8,000 learners were simulated. The main goal of the simulation was to find 
out how well the ZPD-KT predicted the mastery value at each practicing opportunity, or how much the 
prediction error would be. Therefore, these learners were randomly assigned an initial estimated mastery 
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value for each learning outcome following a normal distribution. A learning rate was specified for 
predicting the new mastery value. Also, these learners were randomly assigned an initial actual mastery 
value for each learning outcome. A random value between 0.1 and 0.3 was drawn as the actual learning 
increment at each practice opportunity. The ZPD-KT model needed to track the changing knowledge 
levels of all learners who had different initial actual mastery values and learning increments. To do this, 
we also simulated the standard Bayesian Knowledge Tracing (stdBKT) model as the baseline for 
comparison. 

Findings 

First, the simulation helped refine the ZPD-based knowledge tracing algorithm. Also, it showed 
that the ZPD-KT model has significantly higher prediction accuracy than the stdBKT model. 

Zone of Proximal Development Knowledge Tracing Algorithm Improvement 

By experimenting through simulation, we discovered that the prediction accuracy could be 
improved significantly if the learning rate was adjusted for each practicing opportunity based on their 
mastery values (Equation 5). 

LR = baseLR x masteryZPD[t] x [1 + (masteryZPD[t] – masteryPredicted[t-1])]  (5) 

By running the system self-learning module, we identified that the optimal base learning rate (baseLR) 
is 0.517. 

Prediction Accuracy 

The simulated practicing data for both ZPD-KT and stdBKT models were compared for 
prediction accuracy. Figure 5 shows each model’s average prediction deviation for each learning 
outcome. Figure 6 shows an example of the knowledge tracing progression on a learning outcome for a 
student comparing the two models. 

The average prediction deviation is calculated as shown in Equation 6: 

∑ (#!$%!)"
!#$

'
           (6) 

t = practice time 

T = the total number of practices 
Pt = the predicted mastery value at time t 

At = the actual mastery value at time t 
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Figure 5 

Prediction Deviation Comparison Between the Two Research Models 

 
Note. stdBKT = standard Bayesian Knowledge Tracing; ZPD-KT = zone of proximal development knowledge tracing; 
LO = learning outcome. 

Figure 6 

An Example of Knowledge Tracing Progression of ZPD-KT vs. stdBKT 

 
Note. stdBKT = standard Bayesian Knowledge Tracing; ZPD-KT = zone of proximal development knowledge tracing; 
LO = learning outcome. 
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Table 2 shows two comparison metrics for all learning outcomes and all students: (a) the average 
prediction deviation from the actual mastery value and (b) the accuracy of predicted mastered status. 

Table 2 

Overall Comparison Between ZPD-KT and stdBKT Model 

Metric stdBKT ZPD-KT stdBKT vs. ZPD-KT t p 

Average prediction deviation 0.174999 0.116735 26.05 < .0001 

Accuracy of predicted mastered  82.83% 88.29% -24.41 < .0001 

Note. stdBKT = standard Bayesian Knowledge Tracing; ZPD-KT = zone of proximal development knowledge tracing. 

With a learner sample size of 8,000 and total trials of around 20,000, the statistical comparison 
between stdBKT and ZPD-KT reveals significant differences in both metrics. For average prediction 
deviation, the t-statistic is 26.05, indicating a highly significant difference favouring ZPD-KT’s lower 
deviation. The accuracy of predicted mastered again shows a significant difference in favour of ZPD-
KT’s higher accuracy. These results strongly suggest that ZPD-KT outperforms stdBKT in both 
prediction accuracy and mastery identification, with the large sample size providing robust statistical 
evidence for these conclusions. 

Discussion 

Traditionally, higher education courses mainly focus on instructional content. As more educators 
realize that SRL can be a critical factor for online learning success, they are using formative assessment 
to permit learners to self-check their knowledge proficiencies and weaknesses. Nevertheless, 
Ebbinghaus’ (1913) forgetting curve reminds us that retrieval practice is essential. Also, learners need to 
consolidate interrelated concepts and skills covered across units or entire courses. In some cases, 
learners may need to identify the root cause of the academic difficulties they are experiencing, such as 
struggling with a concept or skill. 

Unlike traditional self-assessments that rely on predetermined questions, adaptive practicing 
systems trace learners’ knowledge levels as they keep changing. This study designed a CAP system for 
learning autonomy and efficient adaptivity. As an AI-learner shared control model, ZPD-KT effectively 
embeds learner confidence and learner control in the model design. 

The ZPD-KT model tested significantly increased prediction accuracy compared to the stdBKT 
model through simulation, but it still has great potential for improvement. For example, the mastery 
ranges specified in the ZPD-KT framework shown in Table 1 and the weights used for question 
sequencing as shown in Equations 3 and 4 are all based on educators’ experience and therefore are 
somewhat arbitrary. They could be further optimized by analyzing learners’ practicing data through 
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machine learning technology. This optimization process could be integrated into the system self-learning 
module. 

Although the CAP system is designed with STEM courses in mind, it could be used for any 
discipline. Since CAP carefully considers the prerequisite relationships among KCs, it has a tremendous 
advantage when dealing with subjects that have complex learning topics and hierarchical structures. 
However, the CAP system does not consider the forgetting factor during the practicing process. To 
address this issue, we plan to embed the spaced practice principle in the future, which could especially 
benefit learning outcomes at the lower levels of Bloom’s taxonomy. 

Additionally, the ZPD-KT model does not require training with massive historical data, so it 
eliminates the cold start problem and reduces potential biases caused by training data. While initially 
designed for self-paced online higher education, CAP could be used in many other online learning 
environments. However, further research and experiments are needed to validate such hypotheses. 

Conclusion 

Facilitating self-regulated learning skills is critical for success in education. To do this, an AI-
learner shared control model (ZPD-KT) for a confidence-based adaptive practicing (CAP) system for 
self-paced online STEM courses was designed. Through a simulation, the model design was refined and 
its effectiveness was tested. In practical terms, the comparison shown in Table 2 suggests that ZPD-KT 
is substantially more effective than the stdBKT model. This improvement could lead to more 
personalized and efficient experiences for learners when implemented in educational technology 
systems. 

Although designed to facilitate self-regulated learning, adaptive practicing could also reduce 
instructor workload for academic support in self-paced online learning. By exploring integrating learner 
confidence and control in the adaptive practicing system, this study can shed light on researching a new 
way of keeping human learners in the loop of AI-based adaptive learning. 

So far, this study has only investigated confidence rating and question skipping in the AI-learner 
shared control model. Future research could investigate how other side information is included in the 
model. For example, learners’ affective states (e.g., confusion, engagement, frustration, and distraction) 
also indicate learning performance and could be considered in the adaptive practicing model design. At 
this stage, a simulation was conducted to evaluate the effectiveness of the CAP system and the ZPD-KT 
model. However, an experiment with real-world courses is planned to evaluate how learners react to the 
interaction design of the CAP, such as how they feel about the options provided for the confidence 
rating and question skipping.  



CJLT/RCAT Vol. 50 (3) 

Adaptive Practicing Design to Facilitate Self-Regulated Learning 18 

References 

Beck, J. E., & Gong, Y. (2013). Wheel-spinning: Students who fail to master a skill. In H. C. Lane, 
K. Yacef, J. Mostow, & P. Pavlik (Eds.), Artificial intelligence in education. AIED2013 (pp. 
431–440). Springer. https://doi.org/10.1007/978-3-642-39112-5_44 

Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and 
illusions. Annual Review of Psychology, 64, 417–444. https://doi.org/10.1146/annurev-psych-
113011-143823 

Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies and academic achievement in 
online higher education learning environments: A systematic review. The Internet and Higher 
Education, 27, 1–13. https://doi.org/10.1016/j.iheduc.2015.04.007 

Broadbent, J. (2017). Comparing online and blended learners’ self-regulated learning strategies and 
academic performance. The Internet and Higher Education, 33, 24–32. 
https://doi.org/10.1016/j.iheduc.2017.01.004 

Brusilovsky, P. (2007). Adaptive navigation support. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), 
The adaptive web (pp. 263–290). Springer. https://doi.org/10.1007/978-3-540-72079-9_8 

Brusilovsky, P. (2024). AI in education, learner control, and human-AI collaboration. International 
Journal of Artificial Intelligence in Education, 34, 122–135. https://doi.org/10.1007/s40593-023-
00356-z 

Clement, B., Roy, D., Oudeyer, P.-Y., & Lopes, M. (2015). Multi-armed bandits for intelligent tutoring 
systems. Journal of Educational Data Mining, 7(2), 20–48. 
https://doi.org/10.48550/arXiv.1310.3174 

Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of procedural 
knowledge. User Modeling and User-Adapted Interaction, 4, 253–278. 
https://doi.org/10.1007/BF01099821 

Deci, E. L., Vallerand, R. J., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and education: The self-
determination perspective. Educational Psychologist, 26(3-4), 325–346. 
https://doi.org/10.1080/00461520.1991.9653137 

Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Springer-Verlag. 
https://doi.org/10.1007/978-3-642-58625-5 

Doroudi, S., Aleven, V., & Brunskill, E. (2019). Where’s the reward? International Journal of Artificial 
Intelligence in Education, 29, 568–620. https://doi.org/10.1007/s40593-019-00187-x 

Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology. Annals of Neurosciences, 
20(4), 155–156. https://www.doi.org/10.5214/ans.0972.7531.200408  

Ekstrand, B. (2015). What it takes to keep children in school: A research review. Educational Review, 
67(4), 459–482. https://doi.org/10.1080/00131911.2015.1008406 

https://doi.org/10.1007/978-3-642-39112-5_44
https://doi.org/10.1146/annurev-psych-113011-143823
https://doi.org/10.1146/annurev-psych-113011-143823
https://doi.org/10.1016/j.iheduc.2015.04.007
https://doi.org/10.1016/j.iheduc.2017.01.004
https://doi.org/10.1007/978-3-540-72079-9_8
https://doi.org/10.1007/s40593-023-00356-z
https://doi.org/10.1007/s40593-023-00356-z
https://doi.org/10.48550/arXiv.1310.3174
https://doi.org/10.1007/BF01099821
https://doi.org/10.1080/00461520.1991.9653137
https://doi.org/10.1007/978-3-642-58625-5
https://doi.org/10.1007/s40593-019-00187-x
https://www.doi.org/10.5214/ans.0972.7531.200408
https://doi.org/10.1080/00131911.2015.1008406


CJLT/RCAT Vol. 50 (3) 

Adaptive Practicing Design to Facilitate Self-Regulated Learning 19 

Gardner-Medwin, T., & Curtin, N. (2007, May 29–31). Certainty-based marking (CBM) for reflective 
learning and proper knowledge assessment. In REAP International Online Conference on 
Assessment Design for Learner Responsibility (pp. 1–7). REAP. 
https://www.ucl.ac.uk/lapt/REAP_cbm.pdf 

Holstein, K., Aleven, V., & Rummel, N. (2020). A conceptual framework for human–AI hybrid 
adaptivity in education. In I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán 
(Eds.), Artificial intelligence in education. AIED 2020 (pp. 240–254). Springer. 
https://doi.org/10.1007/978-3-030-52237-7_20 

Hsu, H. C. K., Wang, C. V., & Levesque-Bristol, C. (2019). Re-examining the impact of self-
determination theory on learning outcomes in the online learning environment. Education and 
Information Technologies, 24, 2159–2174. https://doi.org/10.1007/s10639-019-09863-w 

Jansen, R. S., van Leeuwen, A., Janssen, J., & Kester, L. (2019). Supporting learners’ self-regulated 
learning in Massive Open Online Courses. Computers & Education, 146, 103771. 
https://doi.org/10.1016/j.compedu.2019.103771 

Lehmann, T., Hähnlein, I., & Ifenthaler, D. (2014). Cognitive, metacognitive and motivational 
perspectives on preflection in self-regulated online learning. Computers in Human Behavior, 32, 
313–323. https://doi.org/10.1016/j.chb.2013.07.051 

Luo, Y., Lin, J., & Yang, Y. (2021). Students’ motivation and continued intention with online self-
regulated learning: A self-determination theory perspective. Zeitschrift für 
Erziehungswissenschaft, 24, 1379–1399. https://doi.org/10.1007/s11618-021-01042-3 

Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2011). Recommender systems 
in technology-enhanced learning. In F. Ricci, L. Rokach, B. Shapira, & P. Kantor (Eds.), 
Recommender systems handbook (pp. 387–415). Springer. https://doi.org/10.1007/978-0-387-
85820-3_12 

Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J., & Fernández-Leal, A. 
(2023). Human-in-the-loop machine learning: A state of the art. Artificial Intelligence Review, 
56(4), 3005–3054. https://doi.org/10.1007/s10462-022-10246-w 

Nkambou, R., Bourdeau, J., & Mizoguchi, R. (Eds.). (2010). Advances in intelligent tutoring systems. 
Springer. https://doi.org/10.1007/978-3-642-14363-2 

Novacek, P. (2013). Confidence-based assessments within an adult learning environment. In G. 
Demetrios, J. Sampson, M. Spector, D. Ifenthaler, & P. Isaías (Eds.), IADIS International 
Conference on Cognition and Exploratory Learning in Digital Age (CELDA 2013) (pp. 403–
406). International Association for Development of the Information Society. 
https://eric.ed.gov/?id=ED562245 

https://www.ucl.ac.uk/lapt/REAP_cbm.pdf
https://doi.org/10.1007/978-3-030-52237-7_20
https://doi.org/10.1007/s10639-019-09863-w
https://doi.org/10.1016/j.compedu.2019.103771
https://doi.org/10.1016/j.chb.2013.07.051
https://doi.org/10.1007/s11618-021-01042-3
https://doi.org/10.1007/978-0-387-85820-3_12
https://doi.org/10.1007/978-0-387-85820-3_12
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.1007/978-3-642-14363-2
https://eric.ed.gov/?id=ED562245


CJLT/RCAT Vol. 50 (3) 

Adaptive Practicing Design to Facilitate Self-Regulated Learning 20 

Nuryadin, A., Lidinillah, D. A. M., Prehanto, A., Maesaroh, S. S., Putri, I. R., & Desmawati, S. A. 
(2024). Self-regulated learning in STEM education: A bibliometric mapping analysis of research 
using Scopus database. International Journal of Education in Mathematics, Science and 
Technology, 12(4), 919–941. https://doi.org/10.46328/ijemst.4015 

Papoušek, J., & Pelánek, R. (2017). Should we give learners control over item difficulty? In M. Tkalcic, 
D. Thakker, P. Germanakos, K. Yacef, C. Paris, & O. Santos (Eds.), UMAP ’17: Adjunct 
publication of the 25th Conference on User Modeling, Adaptation and Personalization (pp. 299–
303). ACM. https://doi.org/10.1145/3099023.3099080 

Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and beyond: An overview of learner 
modeling techniques. User Modeling and User-Adapted Interaction, 27(3), 313–350. 
https://doi.org/10.1007/s11257-017-9193-2 

Preheim, M., Dorfmeister, J., & Snow, E. (2023). Assessing confidence and certainty of students in an 
undergraduate linear algebra course. Journal for STEM Education Research, 6, 159–180. 
https://doi.org/10.1007/s41979-022-00082-6 

Rahdari, B., Brusilovsky, P., He, D., Thaker, K. M., Luo, Z., & Lee, Y. J. (2022). HELPeR: An 
interactive recommender system for ovarian cancer patients and caregivers. In J. Golbeck, F. M. 
Harper, V. Murdock, M. Ekstrand, B. Shapira, J. Basilico, K. Lundgaard, & E. Oldridge (Eds.), 
RecSys ’22: Proceedings of the 16th ACM Conference on Recommender Systems (pp. 644–647). 
https://doi.org/10.1145/3523227.3551471 

Remesal, A., Corral, M. J., García-Mínguez, P., Domínguez, J., SanMiguel, I., Macsotay, T., & Suárez, 
E. (2023). Certainty-based self-assessment: A chance for enhanced learning engagement in 
higher education. An experience at the University of Barcelona. In D. Guralnick, M. E. Auer, & 
A. Poce (Eds.), Creative approaches to technology-enhanced learning for the workplace and 
higher education. TLIC 2023 (pp. 689–700). Springer. https://doi.org/10.1007/978-3-031-41637-
8_56 

Schunk, D. H., & DiBenedetto, M. K. (2020). Motivation and social cognitive theory. Contemporary 
Educational Psychology, 60, Article 101832. https://doi.org/10.1016/j.cedpsych.2019.101832 

Smrkolj, Š., Bančov, E., & Smrkolj, V. (2022). The reliability and medical students’ appreciation of 
certainty-based marking. International Journal of Environmental Research and Public Health, 
19(3), Article 1706. https://doi.org/10.3390/ijerph19031706 

Sorgenfrei, C., & Smolnik, S. (2016). The effectiveness of e-learning systems: A review of the empirical 
literature on learner control. Decision Sciences Journal of Innovative Education, 14(2), 154–184. 
https://doi.org/10.1111/dsji.12095 

Vainas, O., Bar-Ilan, O., Ben-David, Y., Gilad-Bachrach, R., Lukin, G., Ronen, M., & Sitton, D. (2019). 
E-Gotsky: Sequencing content using the zone of proximal development. ArXiv. 
https://doi.org/10.48550/arXiv.1904.12268 

https://doi.org/10.46328/ijemst.4015
https://doi.org/10.1145/3099023.3099080
https://doi.org/10.1007/s11257-017-9193-2
https://doi.org/10.1007/s41979-022-00082-6
https://doi.org/10.1145/3523227.3551471
https://doi.org/10.1007/978-3-031-41637-8_56
https://doi.org/10.1007/978-3-031-41637-8_56
https://doi.org/10.1016/j.cedpsych.2019.101832
https://doi.org/10.3390/ijerph19031706
https://doi.org/10.1111/dsji.12095
https://doi.org/10.48550/arXiv.1904.12268


CJLT/RCAT Vol. 50 (3) 

Adaptive Practicing Design to Facilitate Self-Regulated Learning 21 

Viberg, O., Khalil, M., & Baars, M. (2020). Self-regulated learning and learning analytics in online 
learning environments: A review of empirical research. In C. Rensing & H. Drachsler (Chairs), 
LAK ’20: Proceedings of the Tenth International Conference on Learning Analytics & 
Knowledge (pp. 524–533). ACM. https://doi.org/10.1145/3375462.3375483 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, 
V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press. 

Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for Web-based 
instruction. International Journal of Artificial Intelligence in Education, 12, 351–384. 
https://telearn.hal.science/hal-00197328v1 

Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben, G. J., & Paas, F. (2019). Supporting self-
regulated learning in online learning environments and MOOCs: A systematic review. 
International Journal of Human–Computer Interaction, 35(4-5), 356–373. 
https://doi.org/10.1080/10447318.2018.1543084 

Yan, H., Lin, F., & Kinshuk. (2021). Including learning analytics in the loop of self-paced online course 
learning design. International Journal of Artificial Intelligence in Education, 31, 878–895. 
https://doi.org/10.1007/s40593-020-00225-z 

Yan, H., Lin, F., & Kinshuk. (2022). Removing learning barriers in self-paced online STEM education. 
Canadian Journal of Learning and Technology, 48(4), 1–18. https://doi.org/10.21432/cjlt28264 

Zimmerman, B. J. (2020). Attaining self-regulation: A social cognitive perspective. In Handbook of Self-
Regulation (3rd ed., pp. 13–39). Elsevier. 

Zohaib, M. (2018). Dynamic difficulty adjustment (DDA) in computer games: A review. Advances in 
Human‐Computer Interaction, 2018, Article 5681652. https://doi.org/10.1155/2018/5681652 

  

https://doi.org/10.1145/3375462.3375483
https://telearn.hal.science/hal-00197328v1
https://doi.org/10.1080/10447318.2018.1543084
https://doi.org/10.1007/s40593-020-00225-z
https://doi.org/10.21432/cjlt28264
https://doi.org/10.1155/2018/5681652


CJLT/RCAT Vol. 50 (3) 

Adaptive Practicing Design to Facilitate Self-Regulated Learning 22 

Authors 

Hongxin Yan is a Learning Designer at Athabasca University in Alberta, Canada and a Doctoral 
Student at the University of Eastern Finland (UEF). His research interests include adaptive and 
personalized learning, artificial intelligence (AI) in education, learning analytics, and related fields. 
Email: hongya@student.uef.fi ORCID: 0000-0002-3729-0844 

Fuhua Lin is a Professor in the Faculty of Science and Technology at Athabasca University in Alberta, 
Canada. His research focuses on adaptive learning systems, artificial intelligence in education, 
and virtual reality applications for training. He has led multiple NSERC/CFI/Alberta Innovates-funded 
projects to advance personalized learning technologies. Email: oscarl@athabascau.ca 

Kinshuk is a full Professor and the Dean of the College of Information at the University of North Texas, 
USA. His research interests include learning analytics, mobile learning, ubiquitous learning, 
personalized learning, and adaptivity. Email: kinshuk@ieee.org 

 
 

© 2024 Hongxin Yan, Fuhua Lin, Kinshuk 
This work is licensed under a Creative Commons Attribution-NonCommercial  
CC-BY-NC 4.0 International license. 
 

mailto:hongya@student.uef.fi
https://orcid.org/0000-0002-3729-0844
mailto:oscarl@athabascau.ca
mailto:kinshuk@ieee.org

