Factors Influencing the Design of Educational Robotics Tasks Supporting Collaborative Problem-Solving
DOI:
https://doi.org/10.21432/cjlt28754Keywords:
activity theory, collaborative problem-solving, educational robotics, task design, teacher educationAbstract
A fundamental skill for primary school students is the ability to solve problems collaboratively. Most research has focused on the analysis and assessment of this skill in primary school students. However, little attention has been paid to the process of designing tasks to foster the development of collaborative problem-solving in these students. Furthermore, collaborative problem-solving can only emerge in a meaningful way if the tasks are designed in such a way as to encourage students to collaborate. This research focuses specifically on the process of designing tasks related to educational robotics, using the theoretical framework of Engeström’s activity theory. Participants, made up of primary school teachers and educational consultants, completed a questionnaire about their task design process and took part in two group interviews. The results highlight that the design of educational robotics tasks, aimed at developing collaborative problem-solving in students, is dependent on the technological and educational robotics task design skills of the designer. The rules governing the design of educational robotics tasks include the time needed to set them up and teamwork.
References
Atman Uslu, N., Yavuz, G. Ö., & Koçak Usluel, Y. (2022). A systematic review study on educational robotics and robots. Interactive Learning Environments, 1–25. https://doi.org/10.1080/10494820.2021.2023890
Avry, S., Chanel, G., Betrancourt, M., & Molinari, G. (2018). Effet des antécédents émotionnels de contrôle et de valeur sur la résolution de problème dans un jeu vidéo collaboratif. Revue des sciences et techniques de l’information et de la communication pour l’éducation et la formation, 25(1). https://doi.org/10.23709/STICEF.25.1.3
Barma, S. (2008). Un contexte de renouvellement de pratiques en éducation aux sciences et aux technologies : une étude de cas réalisée sous l’angle de la théorie de l’activité [thèse]. Université Laval. http://hdl.handle.net/20.500.11794/20215
Bergner, Y., Andrews, J. J., Zhu, M., & Gonzales, J. E. (2016). Agent-based modeling of collaborative problem solving : Agent-based modeling of collaborative problem solving. ETS Research Report Series, 2016(2), 1–14. https://doi.org/10.1002/ets2.12113
Care, E., Griffin, P., Scoular, C., Awwal, N., & Zoanetti, N. (2015). Collaborative problem solving tasks. Dans P. Griffin et E. Care (dir.), Assessment and teaching of 21st century skills (pp. 85–104). Springer Netherlands. https://doi.org/10.1007/978-94-017-9395-7_4
Cevikbas, M., & Kaiser, G. (2021). A systematic review on task design in dynamic and interactive mathematics learning environments (DIMLEs). Mathematics, 9(4), 399. https://doi.org/10.3390/math9040399
Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162–175. https://doi.org/10.1016/j.compedu.2017.03.001
De Hei, M. S. A., Sjoer, E., Admiraal, W., & Strijbos, J.-W. (2016). Teacher educators’ design and implementation of group learning activities. Educational Studies, 42(4), 394–409. https://doi.org/10.1080/03055698.2016.1206461
DeVane, B., & Squire, K. D. (2012). Activity theory in the learning technologies. Dans Theoretical foundations of learning environments (2e éd., pp. 242–267). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9780203813799-12/activity-theory-learning-technologies-benjamin-devane-kurt-squire
Dindar, M., Järvelä, S., Nguyen, A., Haataja, E., & Çini, A. (2022). Detecting shared physiological arousal events in collaborative problem solving. Contemporary Educational Psychology, 69, 102050. https://doi.org/10.1016/j.cedpsych.2022.102050
Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. https://lchc.ucsd.edu/mca/Paper/Engestrom/Learning-by-Expanding.pdf
Engeström, Y. (1999). Activity theory and individual and social transformation. Dans Y. Engeström, R. Miettinen et R.-L. Punamäki-Gitai (dir.), Perspectives on activity theory (pp. 19–38). Cambridge University Press.
Engeström, Y., & Pyörälä, E. (2021). Using activity theory to transform medical work and learning. Medical Teacher, 43(1), 7–13. https://doi.org/10.1080/0142159X.2020.1795105
Graesser, A., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W., & Hesse, F. W. (2018). Advancing the science of collaborative problem solving. Psychological Science in the Public Interest, 19(2), 59–92. https://doi.org/10.1177/1529100618808244
Graesser, A., Kuo, B.-C., & Liao, C.-H. (2017). Complex problem solving in assessments of collaborative problem solving. Journal of Intelligence, 5(2), 10. https://doi.org/10.3390/jintelligence5020010
Hall, B. M. (2014). Designing collaborative activities to promote understanding and problem-solving. International Journal of e-Collaboration, 10(2), 55–71.
Hesse, F., Care, E., Buder, J., Sassenberg, K., & Griffin, P. (2015). A framework for teachable collaborative problem solving skills. Dans P. Griffin et E. Care (dir.), Assessment and teaching of 21st century skills (pp. 37–56). Springer Netherlands. https://doi.org/10.1007/978-94-017-9395-7_2
Kamga, R. (2019). Analyse de la compétence de résolution collaborative de problèmes des futur(e)s enseignant(e)s de l’enseignement primaire. Université Laval. https://corpus.ulaval.ca/jspui/handle/20.500.11794/36794
Kamga, R., Romero, M., Komis, V., & Mirsili, A. (2017). Design requirements for educational robotics activities for sustaining collaborative problem solving. Dans D. Alimisis, M. Moro et E. Menegatti (dir.), Educational robotics in the makers era (vol. 560, pp. 225–228). Springer International Publishing. https://doi.org/10.1007/978-3-319-55553-9_18
Kolfschoten, G., French, S., & Brazier, F. (2014). A discussion of the cognitive load in collaborative problem-solving: The decision-making phase. EURO Journal on Decision Processes, 2(3–4), 257–280. https://doi.org/10.1007/s40070-014-0034-9
L’Écuyer, R. (1990). Méthodologie de l’analyse développementale de contenu. Méthode GPS et concept de soi. Presses de l’Université du Québec. http://www.deslibris.ca/ID/422680
Leroy, A., & Romero, M. (2022). Creative intention and persistence in educational robotic. Educational Technology Research and Development, 70. https://doi.org/10.1007/s11423-022-10128-6
Nieminen, J. H., Chan, M. C. E., & Clarke, D. (2022). What affordances do open-ended real-life tasks offer for sharing student agency in collaborative problem-solving? Educational Studies in Mathematics, 109(1), 115–136. https://doi.org/10.1007/s10649-021-10074-9
OCDE. (2013). Pisa 2015: draft collaborative problem solving framework. Organization for Economic Cooperation & Development. https://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Collaborative%20Problem%20Solving%20Framework%20.pdf
Oliver, M., & Higgins, S. (2023). Exploring task design to promote discipline-specific reasoning in primary English. Thinking Skills and Creativity, 47, 101230. https://doi.org/10.1016/j.tsc.2022.101230
Papadakis, S., & Kalogiannakis, M. (2022). Learning computational thinking development in young children with bee-bot educational robotics. Dans I. R. Management Association (dir.), Research anthology on computational thinking, programming, and robotics in the classroom (pp. 926–947). IGI Global. https://doi.org/10.4018/978-1-6684-2411-7.ch040
Papert, S. (1980). Turtle geometry: A mathematics made for learning. Dans Mindstorms. Children, computers and powerful ideas (pp. 55–94). Basic Books. http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf
Rojas, M., Nussbaum, M., Chiuminatto, P., Guerrero, O., Greiff, S., Krieger, F., & Van Der Westhuizen, L. (2021). Assessing collaborative problem-solving skills among elementary school students. Computers & Education, 175, 104313. https://doi.org/10.1016/j.compedu.2021.104313
Romero, M., & DeBlois, L. (2022). Analyse du processus de construction de connaissances dans des activités de programmation à l’école. Canadian Journal of Science, Mathematics and Technology Education, 22(2), 405–421. https://doi.org/10.1007/s42330-022-00210-9
Sannino, A. (2015). The emergence of transformative agency and double stimulation: Activity-based studies in the Vygotskian tradition. Learning, Culture and Social Interaction, 4, 1–3. https://doi.org/10.1016/j.lcsi.2014.07.001
Siddiq, F., & Scherer, R. (2017). Revealing the processes of students’ interaction with a novel collaborative problem solving task: An in-depth analysis of think-aloud protocols. Computers in Human Behavior, 76, 509–525. https://doi.org/10.1016/j.chb.2017.08.007
Socratous, C., & Ioannou, A. (2022). Evaluating the impact of the curriculum structure on group metacognition during collaborative problem-solving using educational robotics. TechTrends, 66. https://doi.org/10.1007/s11528-022-00738-5
Song, Y. (2018). Improving primary students’ collaborative problem solving competency in project-based science learning with productive failure instructional design in a seamless learning environment. Educational Technology Research and Development, 66(4), 979–1008. https://doi.org/10.1007/s11423-018-9600-3
Sullivan, P., Knott, L., & Yang, Y. (2015). The relationships between task design, anticipated pedagogies, and student learning. Task design in mathematics education. An ICMI Study 22, (pp. 8–114). Springer Nature.
Taylor, K., & Baek, Y. (2018). Collaborative robotics, more than just working in groups. Journal of Educational Computing Research, 56(7), 979–1004. https://doi.org/10.1177/0735633117731382
Tissenbaum, M., Lui, M., & Slotta, J. (2012). Co-designing collaborative smart classroom curriculum for secondary school science. Journal of Universal Computer Science, 18(3), 327–352.
Unal, E., & Cakir, H. (2021). The effect of technology-supported collaborative problem solving method on students’ achievement and engagement. Education and Information Technologies, 26(4), 4127–4150. https://doi.org/10.1007/s10639-021-10463-w
Warneken, F., Steinwender, J., Hamann, K., & Tomasello, M. (2014). Young children’s planning in a collaborative problem-solving task. Cognitive Development, 31, 48–58. https://doi.org/10.1016/j.cogdev.2014.02.003
Watson, A. & Ohtani, M. (2015). Task design in mathematics education. An ICMI Study 22. Springer Nature.
Yin, K. Y., Abdullah, A. G. K., & Alazidiyeen, N. J. (2011). Collaborative problem solving methods towards critical thinking. International Education Studies, 4(2), 58–62. https://doi.org/10.5539/ies.v4n2p58
Zhang, S., Gao, Q., Sun, M., Cai, Z., Li, H., Tang, Y., & Liu, Q. (2022). Understanding student teachers’ collaborative problem solving: Insights from an epistemic network analysis (ENA). Computers & Education, 183, 104485. https://doi.org/10.1016/j.compedu.2022.104485
Published
Issue
Section
License
Copyright (c) 2025 Raoul Kamga, Sylvie Barma, Frédéric Fournier, Pierre Lachance, Joelle Bérubé-Daigneault, Sarah Cool-Charest

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Notice
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an International Creative Commons Attribution-NonCommercial License (CC-BY-NC 4.0) that allows others to share the work for non-commercial purposes, with an acknowledgement of the work's authorship and initial publication in this journal.