Validation of a Questionnaire Assessing Students’ Self-Directed and Collaborative Learning With and Without Technology in Canadian Middle School Classrooms

  • Chantal Labonté University of Alberta
  • Veronica R. Smith University of Alberta
Keywords: self-directed learning, collaborative learning, ICT-supported learning


In the current study, the researchers examine the validity of a questionnaire assessing students’ perceptions of their self-directed learning and collaborative learning with and without technology with a group of Canadian middle school students. Lee and colleagues (2014) developed an 18-item questionnaire for use in assessing high school students’ perceptions of their learning in Singapore. Three hundred and twenty middle school students from across Alberta, Canada completed the questionnaire. The results of a confirmatory factor analysis revealed that the questionnaire did not have sufficient model fit. The researchers used a jackknifing procedure to systematically remove four items in order to achieve a psychometrically sound questionnaire. The results suggest that the reduced questionnaire is a useful self-report instrument for assessing Canadian middle school students’ perceptions of their learning.

Dans la présente étude, les chercheurs examinent la validité d’un questionnaire évaluant les perceptions qu’ont les élèves de leur apprentissage autonome et collaboratif, avec et sans technologie, au sein d’un groupe d’élèves d’écoles intermédiaires canadiennes. Lee et ses collègues (2014) ont développé un questionnaire de 18 items pour évaluer les perceptions qu’ont des élèves d’écoles secondaires quant à leur apprentissage. Trois cent vingt élèves d’écoles intermédiaires à travers l’Alberta, au Canada, ont rempli le questionnaire. Les résultats d’une analyse factorielle confirmatoire ont révélé que le questionnaire avait été insuffisamment ajusté au modèle. Les chercheurs se sont servis d’une procédure de jackknife afin de supprimer systématiquement quatre items afin d’obtenir un questionnaire solide sur le plan psychométrique. Les résultats suggèrent que le questionnaire raccourci est un instrument utile pour l’auto-évaluation des perceptions qu’ont des élèves d’écoles intermédiaires quant à leur apprentissage.


Alberta Education. (2013). Learning and technology policy framework. School Technology Branch.

Bolhuis, S. (2003). Towards process-oriented teaching for self-directed lifelong learning: a multidimensional perspective. Learning and Instruction, 13, 327-347.

Bonk, C., Lee, M., Kou, X., Xu, S., & Sheu, F.-R. (2015). Understanding the self-directed online learning preferences, goals, achievements, and challenges of MIT OpenCourseWare subscribers. Educational Technology & Society, 18(2), 349-368.

Byrne, B. (2010). Structural equation modeling wih AMOS: Basic concepts, applications, and programming (2nd Edition ed.). New York: Routledge.

Dillenbourg, P. (1999). What do you mean by 'collaborative learning'? In P. Dillenbourg (Ed.), Collaborative-learning: Cognitive and Computational Approaches (pp. 1-19). Elsevier: Oxford.

Domalewska, D. (2014). Technology-supported classroom for collaborative learning: Blogging in the foreign language classroom. International Journal of Education and Development using Information and Communication Technology, 4, 21-30.

Downing, S. (2003). Validity: on the meaningful interpretation of assessment data. Medical Education, 37, 830-837.

Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.

Garrison, D. (1997). Self-directed learning: Toward a comprehensive model. Adult Education Quaterly, 48(1), 18-33.

Gibbons, M. (2002). Self-directed learning handbook. San Francisco: John Wiley & Sons, Inc.

Goh, A., Chai, C., & Tsai, C. (2013). Facilitating students' development of their views on nature of science: A knowledge building approach. Asia-Pacific Educational Research, 22(4), 521-530.

Hair, J., Black, W., Babin, B., & Anderson, R. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Harris, P., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. (2009). Research electronic data capture (REDCap)-a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform, 42(2), 377- 381.

Henry, M. (2015). Learning in the digital age: developing critical, creative and collaborative skills. In S. Younie, M. Leask, & K. Burden (Eds.), Teaching and learning with ICT in the primary school (2nd ed., pp. 1-12). Abingdon: Routledge.

Henseler, J., Ringle, C., & Sarstedlt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of Academic Marketing Science, 43, 115-135.

Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6 (1), 53-60.

Hussain, S., Anwar, S., & Majoka, M. (2011). Effect of peer group activity-based learning on students' academic achievement in physics at secondary level. International Journal of Academic Research, 3 (1), 940-944.

Kaplan, R., & Saccuzzo, D. (2013). Psychological testing: Principles, applications & issues (8th ed.). Belmont, CA: Wadsworth Cengage Learning.

Larwin, K., & Harvey, M. (2012). A demonstration of a systematic item-reduction approach using structural equation modeling. Practica Assessment, Research & Evaluation, 17 (8), 1-29.

Lee, K., Tsai, P.-S., Chai, C., & Koh, J. (2014). Students' perceptions of self-directed learning and collaborative learning with and without technology. Journal of Computer Assisted Learning, 30, 425-437.

Partnership for 21st Century Skills. (2011). Framework for 21st century learning. Washington.

Resta, P., & Laferriere, T. (2007). Technology in support of collaborative learning. Educational Psychology Review, 19, 65-83.

Schwartz, D., Tsang, J., & Blair, K. (2016). The ABCs of how we learn. New York: W.W. Norton & Company, Inc.

Shell, D., Husman, J., Turner, J., Cliffel, D., Nath, I., & Sweany, N. (2005). The impact of computer supported collaborative learning communities on high school students' knowledge building, strategic learning, and perceptions of the classroom. Journal of Educational Computing Research, 33(3), 327-349.

Tabachnick, B., & Fidell, L. (2014). Principal components and factor analysis. In B. Tabachnick, & L. Fidell, Using multivariate statistics (Sixth ed., pp. 660-729). Essex: Pearson Education Limited.

Teo, T., Tan, S., Lee, C., Chai, C., Koh, J., Chen, W., et al. (2010). The self-directed learning with technology scale (SDLTS) for young students: An intial development and validation. Computers and Education, 55, 1764-1771.

Terenzini, P., Cabrera, A., Colbeck, C., Parente, J., & Bjorklund, S. (2001). Collaborative learning vs. lecture/discussion: students' reported learning gains. Journal of Engineering Education, 123-130.

Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st century competences: Implications for national curriculum policies. Journal of Curriculum Studies , 44(3), 299-321.

Willett, J., Yamashita, J., & Anderson, R. (1983). A meta-analysis of instructional systems applied in science teaching. Journal of Research in Science Teaching, 20(5), 405-417.