Student-Generated Questions Fostering Sustainable and Productive Knowledge Building Discourse


  • Gaoxia Zhu National Institute of Education, Nanyang Technological University
  • Ahmad Khanlari University of Toronto
  • Monica Resendes University of Toronto



knowledge building, student-generated questions, productive discourse, sustainable discourse, science education


The role of questions in student learning is well recognized. However, the controversial issue of who should pose questions that direct inquiry continues: teachers or students? One perspective advocates that teachers generate questions as it assumes that students cannot generate high-quality questions. In contrast, Knowledge Building, a pedagogical approach that advocates transforming schools into knowledge-creation organizations, emphasizes student agency in generating authentic questions as they try to understand the world around them. This study examined the extent to which elementary students could generate questions and explore how student-generated questions help knowledge-building discourse progress. Comparing question threads (i.e., a series of online notes started with questions) and non-question threads (i.e., a series of online notes not started with questions), we noticed that questions posted by students engaged them in sustainable and progressive discourses, which is central to Knowledge Building. Moreover, the content analysis of the data revealed that the threads starting with questions were more likely to end up with productive threads than the non-question threads.

Author Biographies

Gaoxia Zhu, National Institute of Education, Nanyang Technological University

Gaoxia Zhu is an assistant professor at the National Institute of Education, Nanyang Technological University in Singapore. She has a learning sciences, educational technology, and curriculum and pedagogy background. Her research interests include student agency, socio-emotional interactions, learning analytics, Knowledge Building, and computer-supported collaborative learning (CSCL).

Ahmad Khanlari, University of Toronto

Ahmad Khanlari is a postdoctoral fellow at OISE, University of Toronto in Canada where he researches in educational technology and knowledge building environments. His research area is in Knowledge Building, learning analytics, educational robots, educational technology, engineering education, and STEM education.

Monica Resendes, University of Toronto

Monica Resendes is a researcher at OISE, University of Toronto in Canada. She is a consultant for the Ontario Principal’s Associations and is involved in a province-wide project to help build capacity around environmental inquiry and knowledge building in the classroom.


Bereiter, C., Scardamalia, M., Cassells, C., & Hewitt, J. (1997). Postmodernism, knowledge building, and elementary science. The Elementary School Journal, 97(4), 329.

Black, P., Harrison, C., Lee, C., Marshall, B., & William, D. (2002). Working inside the black box: Assessment for learning in the classroom. Phi Delta Kappan, 86(1), 8–21.

Campbell, J., & Stasser, G. (2006). The influence of time and task demonstrability on decision-making in computer-mediated and face-to-face groups. Small Group Research, 37(3), 271-294.

Chen, B., Resendes, M., Chai, C. S., & Hong, H. Y. (2017). Two tales of time: Uncovering the significance of sequential patterns among contribution types in knowledge-building discourse. Interactive Learning Environments, 25(2), 162-175.

Chen, B., & Zhang, J. (2016). Analytics for knowledge creation: Towards epistemic agency and design-mode thinking. Journal of Learning Analytics, 3(2), 139-163.

Chin, C., & Brown, D. E. (2000). Learning deeply in science: An analysis and reintegration of deep approaches in two case studies of grade 8 students. Research in Science Education, 30, 173–197.

Chin, C., & Kayalvizhi, G. (2002). Posing problems for open investigations: What questions do pupils ask? Research in Science & Technological Education, 20(2), 269-287.

Chin, C., & Kayalvizhi, G. (2005). What do pupils think of open science investigations? A study of Singaporean primary 6 pupils. Educational Research, 47(1), 107–126.

Chin, C., & Osborne, J. (2008). Students’ questions: A potential resource for teaching and learning science. Studies in Science Education, 44(1), 1–39.

Chuy, M., Resendes, M., Tarchi, C., Chen, B., Scardamalia, M., & Bereiter, C. (2011). Ways of contributing to an explanation-seeking dialogue in science and history. QWERTY - Interdisciplinary Journal of Technology, Culture and Education, 6(2), 242–260.

Cuccio-Schirripa, S., & Steiner, H. E. (2000). Enhancement and analysis of science question level for middle school students. Journal of Research in Science Teaching, 37, 210–224.<210::AID-TEA7>3.0.CO;2-I

Fjermestad, J. (2004). An analysis of communication mode in group support systems research. Decision Support Systems, 37(2), 239-263.

Graesser, A., & Olde, B. (2003). How does one know whether a person understands a device? The quality of the questions the person asks when the device breaks down. Journal of Educational Psychology, 95, 524-536.

Hakkarainen, K. (2003). Progressive inquiry in a computer‐supported biology class. Journal of Research in Science Teaching, 40(10), 1072-1088.

Hewitt, J. (2005). Toward an understanding of how threads die in asynchronous computer conferences. Journal of the Learning Sciences, 14(4), 567–589.

Hewitt, J., & Teplovs, C. (1999). An analysis of growth patterns in computer conferencing threads. In C. Hoadley & J. Roschelle (Eds.), Proceedings of the Computer Support for Collaborative Learning (CSCL) 1999 Conference (pp. 232–241). Stanford University Press.

Hsu, C. C., & Wang, T. I. (2018). Applying game mechanics and student-generated questions to an online puzzle-based game learning system to promote algorithmic thinking skills. Computers & Education, 121, 73-88.

Khanlari, A., Resendes, M., Zhu, G., & Scardamalia, M. (2017). Productive knowledge building discourse through student-generated questions. The Proceedings of the 12th International Conference on Computer Supported Collaborative Learning, 585-588. Philadelphia, PA: International Society of the Learning Sciences.

Lai, M., & Law, N. (2013). Questioning and the quality of knowledge constructed in a CSCL context: a study on two grade-levels of students. Instructional Science, 41(3), 597-620.

Miyake, N., & Norman, D. A. (1979). To ask a question, one must know enough to know what is not known. Journal of Verbal Learning and Verbal Behaviour, 18(3), 357–364.

Osborne, R., & Wittrock, M. (1985). The generative learning model and its implications for science education. Studies in Science Education, 12, 59–87.

Pizzini, E. L., & Shepardson, D. P. (1991). Student questioning in the presence of the teacher during problem solving in science. School Science and Mathematics, 91(8), 348-52.

Reeve, R., Messina, R., & Scardamalia, M. (2008). Wisdom in elementary school. In M. Ferrari, G. Potworowski. (Eds.) Teaching for wisdom: Cross-cultural perspectives on fostering wisdom (pp. 79–92). Springer.

Resendes, M. (2014). Enhancing knowledge building discourse in early primary education: Effects of formative feedback [Doctoral dissertation, University of Toronto]. TSpace.

Resendes, M., & Dobbie, K. (2017). Knowledge Building gallery: Teaching for deep understanding and community knowledge creation (A collection of foundational KB practices and teacher innovations). Leading Student Achievement: Networks for Learning Project.

Resta, P., & Laferrière, T. (2007). Technology in support of collaborative learning. Educational Psychology Review, 19(1), 65-83.

Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith (Ed.), Liberal education in a knowledge society (pp. 67-98). Open Court.

Scardamalia, M. (2004). CSILE/Knowledge Forum®. In Education and technology: An encyclopedia (pp. 183–192). ABC-CLIO.

Scardamalia, M., & Bereiter, C. (1983). The development of evaluative, diagnostic, and remedial capabilities in children’s composing. In M. Martlew (Ed.), The psychology of written language: Developmental and educational perspectives (pp. 67-95). John Wiley & Sons.

Scardamalia, M., & Bereiter, C. (1992). Text-based and knowledge-based questioning by children. Cognition and Instruction, 9, 177-199.

Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 97-115). Cambridge University Press.

Thagard, P. (2007). Coherence, truth and the development of scientific knowledge. Philosophy of Science, 74, 28–47.

van Aalst, J. (2009). Distinguishing knowledge-sharing, knowledge-construction, and knowledge-creation discourses. International Journal of Computer-Supported Collaborative Learning, 4(3), 259-287.

Watts, M., Gould, G., & Alsop, S. (1997). Questions of understanding: Categorizing pupils’ questions in science. School Science Review, 79(286), 57-63.

Yang, Y., van Aalst, J., Chan, C. K., & Tian, W. (2016). Reflective assessment in knowledge building by students with low academic achievement. International Journal of Computer-Supported Collaborative Learning, 11(3), 281-311.

Yu, F. Y. (2009). Scaffolding student-generated questions: Design and development of a customizable online learning system. Computers in Human Behavior, 25(5), 1129-1138.

Zhang, J., Hong, H. Y., Scardamalia, M., Teo, C. L., & Morley, E. A. (2011). Sustaining knowledge building as a principle-based innovation at an elementary school. The Journal of the Learning Sciences, 20(2), 262-307.

Zhang, J., Scardamalia, M., Lamon, M., Messina, R., & Reeve, R. (2007). Socio-cognitive dynamics of knowledge building in the work of 9- and 10-year-olds. Educational Technology Research and Development, 55, 117-145.

Zhang, J., Tao, D., Chen, M. H., Sun, Y., Judson, D., & Naqvi, S. (2018). Co-organizing the collective journey of inquiry with idea thread mapper. Journal of the Learning Sciences, 27(3), 390-430.

Zhu, G., & Kim, M. S. (2017, June). A review of assessment tools of Knowledge Building towards the norm of embedded and transformative assessment. Paper presented in Knowledge Building Summer Institute 2017, Philadelphia, PA.

Zhu, G., Resendes, M., Khanlari, A., Scardamalia, M., & Wu, Y. T. (2017, June). Asking semantically similar questions in knowledge building communities: patterns and effects. The Proceedings of the 12th International Conference on Computer Supported Collaborative Learning (pp. 875-876). Philadelphia, PA: International Society of the Learning Sciences.

Zhu, G., Teo, C. L., Khanlari, A, & Mohd, S. B. (2018, August). The use of Knowledge Building scaffolds by grade 7 students. Paper presented in Knowledge Building Summer Institute 2018. Toronto, ON.