Emergence of Learning Analytics in Education: Challenges and Issues of Learning Analysis

Authors

  • Séverine Parent Université du Québec à Rimouski
  • Monique Baron LIP6 - Sorbonne Université

DOI:

https://doi.org/10.21432/cjlt28053

Keywords:

learning analysis, learning analytics, education, e-learning

Abstract

At the EDUsummIT 2019 colloquium, a working group reflected on the analysis of learning. As French-speaking members of this group, in this article we present and address the recommendations of the working group for the deployment of learning analysis in educational institutions in the near future. Some elements to consider in integrating learning analysis, including the role of service providers, the skills needed to interpret data, and the potential effects of such analyze on learning design, are addressed.

Author Biographies

Séverine Parent, Université du Québec à Rimouski

Séverine Parent, Professeure en technologie éducative et littératie numérique, Université du Québec à Rimouski — Campus de Lévis, 1595, boulevard Alphonse-Desjardins, Lévis (Québec) G6V 0A6 Canada. Séverine Parent est professeure en technologie éducative et en littératie numérique. Ses champs de recherche concernent les technologies éducatives, notamment la compétence numérique et l’utilisation des données d’apprentissage, plus particulièrement la variation de l’engagement en contexte d’innovation. Dans sa pratique pédagogique, elle s’intéresse au renouvèlement des espaces d’apprentissage.

Monique Baron, LIP6 - Sorbonne Université

Monique Baron, Maître de conférence retraitée (Collaboratrice bénévole), Sorbonne Université, CNRS, LIP6, F-75005 Paris, France. Monique Baron est maître de conférences bénévole en informatique (retraitée). Investie dès les années 80 dans le domaine « IA et éducation », elle a contribué à constituer la communauté française de recherche en EIAH (Environnements Informatiques pour l’Apprentissage Humain). Ses principaux thèmes de recherche concernent la représentation des connaissances et la formalisation de raisonnements, notamment pour la modélisation de l’apprenant.

References

Alhadad, S. S. (2018). Visualizing data to support judgement, inference, and decision making in learning analytics : Insights from cognitive psychology and visualization science. Journal of Learning Analytics, 5(2), 60-85. https://doi.org/10.18608/jla.2018.52.5

Bakharia, A., Corrin, L., de Barba, P., Kennedy, G., Gašević, D., Mulder, R., Williams, D., Dawson, S., & Lockyer, L. (2016). A conceptual framework linking learning design with learning analytics. Dans D. Gašević (dir.), Proceedings of the Sixth International Conference on Learning Analytics & Knowledge (p. 329-338). https://doi.org/10.1145/2883851.2883944

Butler, D., Leahy, M., Twining, P., Akoh, B., Chtouki, Y., Farshadnia, S., Moore, K., Nikolov, R., Pascual, C., Sherman, B., & Valtonen, T. (2018). Education systems in the digital age : The need for alignment. Technology, Knowledge and Learning, 23(3), 473-494. https://doi.org/10.1007/s10758-018-9388-6

Cairo, A. (2019). Graphics that seem clear can easily be misread : Misreading data visualizations can reinforce biased perceptions. Scientific American. https://www.scientificamerican.com/article/graphics-that-seem-clear-can-easily-be-misread/

Castets-Renard, C. (2018). Régulation des algorithmes et gouvernance du machine learning : vers une transparence et « explicabilité » des décisions algorithmiques? Revue Droit & Affaires, Revue Paris II Assas, 15e édition, 2018. https://ssrn.com/abstract=3391282

Choquet, C., Delozanne, E., & Luengo, V. (2007). Éditorial du numéro spécial Analyse des traces d’utilisation dans les EIAH. Revue STICEF, 14. http://sticef.univ-lemans.fr/num/vol2007/sticef_2007_editoTrace.htm

Daniels, J., Jacobsen, M., Varnhagen, S., & Friesen, S. (2013). Barriers to systemic, effective, and sustainable technology use in high school classrooms/Obstacles à l’utilisation systémique, efficace et durable de la technologie dans les salles de classe des écoles secondaires. La Revue canadienne de l’apprentissage et de la technologie, 39(4). https://doi.org/10.21432/T2SG67

Deschênes, M., & Parent, S. (2019). (28 janvier 2019). Des outils d’analyse de l’apprentissage. Vitrine technologie-éducation. https://www.vteducation.org/fr/articles/analyse-de-lapprentissage/des-outils-danalyse-de-lapprentissage

Design-Based Research Collective. (2003). Design-based research : An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5-8. https://doi.org/10.3102/0013189X032001005

Dilhac, M. A., Abrassart, C., & Voarino, N. (2018). Rapport de la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle. https://www.declarationmontreal-iaresponsable.com/la-declaration

Fisser, P., & Phillips, M. (2020). Learners and learning contexts: New alignments for the digital age. https://edusummit2019.fse.ulaval.ca/files/edusummit2019_ebook.pdf

Frau-Meigs, D. (2020). Pédagogie à distance : les enseignements du e-confinement. The Conversation. http://theconversation.com/pedagogie-a-distance-les-enseignements-du-e-confinement-137327

Friesen, N. (2013). Learning analytics : Readiness and rewards/L’analyse de l’apprentissage : état de préparation et récompenses. La Revue canadienne de l’apprentissage et de la technologie, 39(4). https://doi.org/10.21432/T2J01B

Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64-71. https://link.springer.com/content/pdf/10.1007/s11528-014-0822-x.pdf

Gibson, D., & Ifenthaler, D. (2017). Preparing the next generation of education researchers for big data in higher education. Dans B. Daniel (dir.), Big Data and Learning Analytics in Higher Education (p. 29-42). Cham : Springer International Publishing.

Herlocker, J., Konstan, J. A., & Riedl, J. (2002). An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information retrieval, 5(4), 287-310.

Ifenthaler, D. (2015). Learning analytics. Dans J. M. Spector (dir.), The SAGE Encyclopedia of Educational Technology, 2, 447-451. Thousand Oaks, CA : Sage.

Ifenthaler, D., Gibson, D., & Dobozy, E. (2018). Informing learning design through analytics : Applying network graph analysis. Australasian Journal of Educational Technology, 34(2). https://doi.org/10.14742/ajet.3767

Ifenthaler, D., Gibson, D., Prasse, D., Shimada, A., & Yamada, M. (2020). Putting learning back into learning analytics : Actions for policy makers, researchers, and practitioners. Educational Technology Research and Development, 1-20.

Labarthe, H., & Luengo, V. (2016). L’analytique des apprentissages numériques (rapport de recherche). Paris : Laboratoire d’informatique de Paris 6 (LIP6). https://hal.archives-ouvertes.fr/hal-01714229/document

Laferrière, T., Cox, M., & Baron, G. -L. (2020). Résultats de l’EDUsummIT2019 au service de l’innovation pour l’éducation formelle des jeunes. Revue Adjectif, 1. http://www.epi.asso.fr/revue/articles/a2005d.htm

Lai, K. W., Voogt, J., & Knezek, G. (2017). Rethinking learning in a digital age : EDUsummIT 2017 Summary Reports. https://edusummit2019.fse.ulaval.ca/sites/edusummit2019.fse.ulaval.ca/files/edusummit_2017_ebook_final_12.4.18.pdf

LAK. (27 février - 1er mars 2011). First International Conference on Learning Analytics and Knowledge. Banff, Alberta. http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=11606

Lavoué, É., & Rinaudo, J. -L. (2012). Éditorial du numéro spécial Individualisation, personnalisation et adaptation des EIAH. Revue STICEF, 19. https://www.persee.fr/doc/stice_1952-8302_2012_num_19_1_1043

Lockyer, L., Heathcote, E., & Dawson, S. (2013). Informing pedagogical action: Aligning learning analytics with learning design. American Behavioral Scientist, 57(10), 1439-1459. http://doi.org/10.1177/0002764213479367

Long, P. D., & Siemens, G. (2011). Penetrating the fog : Analytics in learning and education. Educause Review, 46(5), 31-40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education

O’Neil, C. (2016). Weapons of Math Destruction. How Big Data Increases Inequality and Threatens Democracy. New York, NY : Broadway Books.

Office québécois de la langue française (2016). Analyse de l’apprentissage. http://gdt.oqlf.gouv.qc.ca/ficheOqlf.aspx?Id_Fiche=26541629

Paquette, G. (2002). L’ingénierie pédagogique. Pour construire l’apprentissage en réseau. Québec, QC : Presses de l’Université du Québec.

Pardo, A., & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology. https://doi.org/10.1111/bjet.12152

Parent, S., & Deschênes, M. (juin 2018). Fovéa : un objet-frontière pour mieux comprendre l’expérience d’apprentissage des étudiants. Affiche présentée au Congrès annuel de la Société pour l’avancement de la pédagogie dans l’enseignement supérieur (SAPES), Sherbrooke, Québec.

Peraya, D. (2019). Les learning analytics en question. Distances et médiations des savoirs, 25. https://doi.org/10.4000/dms.3485

Pernin, J. -P. (2007). Mieux articuler activité pour l’apprentissage, artefacts logiciels et connaissances : vers un modèle d’ingénierie centré sur les scénarios. Dans M. Baron, D. Guin et L. Trouche (dir.), Environnements informatisés et ressources numériques pour l’apprentissage : conception et usages, regards croisés (p. 161-194). Cachan : Hermes Sciences-Lavoisier.

Reimann, P. (2016). Connecting learning analytics with learning research : The role of design-based research. Learning : Research and Practice, 2(2), 130-142. https://doi.org/10.1080/23735082.2016.1210198

Sanchez, É., & Monod-Ansaldi, R. (2015). Recherche collaborative orientée par la conception. Éducation & didactique, 9(2), 73-94.

Schwartz, D. L., & Arena, D. (2013). Measuring what Matters Most: Choice-based Assessments for the Digital Age. Cambridge, MA : The MIT Press.

SoLAR. (s.d.). What is Learning Analytics? https://www.solaresearch.org/about/what-is-learning-analytics/

Spector, M. J., Ifenthaler, D., Samspon, D., Yang, L., Mukama, E., Warusavitarana, A., Dona, K. L., Eichhorn, K., Fluck, A., Huang, R., Bridges, S., Lu, J., Ren, Y., Gui, X., Deneen, C. C., San Diego, J., & Gibson, D. C. (2016). Technology enhanced formative assessment for 21st century learning. Educational Technology & Society, 19(3), 58-71.

Teplovs, C., Donoahue, Z., Scardamalia, M., & Philip, D. (2007, juillet). Tools for concurrent, embedded, and transformative assessment of knowledge building processes and progress. Dans C. A. Chinn, G. Erkens et S. Puntambekar (dir.), Proceedings of the 8th international conference on Computer supported collaborative learning (p. 721-723). https://dl.acm.org/doi/abs/10.5555/1599600.1599732

Thille, C., & Zimmaro, D. (2017). Incorporating learning analytics in the classroom. New Directions for Higher Education, 179, 19-31. https://doi:10.1002/he.20240

Tufte, E. R. (2001). The Visual Display of Quantitative Information (vol. 2). Cheshire, CT: Graphics Press.

Webb, M. E., Fluck, A., Magenheim, J., Malyn-Smith, J., Waters, J., Deschênes, M., & Zagami, J. (2020). Machine learning for human learners : Opportunities, issues, tensions and threats. Education Technology Research Development. https://doi.org/10.1007/s11423-020-09858-2

Zhang, J., & Chen, B. (2016). Analytics for knowledge creation : Towards epistemic agency and design-mode thinking. Journal of Learning Analytics, 3(2), 139-163. https://doi.org/10.18608/jla.2016.32.7

Published

2021-09-20