Ethical and Critical Issues of Artificial Intelligence in Education: A Systematic Review of the Literature

Authors

  • Simon Collin Université du Québec à Montréal
  • Alexandre Lepage Université de Montréal
  • Léo Nebel Edtech EvidenceB

DOI:

https://doi.org/10.21432/cjlt28448

Keywords:

Education, artificial intelligence systems, ethical and critical issues, systematic review of the literature

Abstract

Although studied since the 2000s, the issues raised by artificial intelligence (AI) systems in education are currently receiving increasing attention in the scientific literature. However, obtaining a comprehensive overview is challenging due to researchers approaching them through diverse educational contexts, computational techniques, and heterogeneous analytical perspectives. Therefore, the objective of this study was to conduct a systematic review of the literature on the ethical and critical issues of AI systems in education to gain a better picture of them. An analysis of 58 scientific documents led us to identify 70 ethical and critical issues of AI systems in education, which were organized under 6 tensions: complexity of educational situations vs. technical standardization; agentivity of educational actors vs. technical automation; educational justice vs. technical rationality; school governance vs. technical design; need for intelligibility of educational actors vs. technical opacity; and dignity of educational actors vs. exploitation of data.

Author Biographies

Simon Collin, Université du Québec à Montréal

Simon Collin is a professor at the Faculty of Education at the Université du Québec à Montréal (UQÀM). He holds the Canada Research Chair on Digital Equity in Education and is a researcher at the Interuniversity Research Center on Teacher Training and Teaching (CRIFPE). He focuses on the issues of equity and democratization raised by technologies in education, approaching them at the intersection of interdisciplinary work on technology, and critical theories.

Alexandre Lepage, Université de Montréal

Alexandre Lepage  est étudiant au doctorat à l’Université de Montréal depuis 2020 et chargé de cours en technologie éducative à l’Université Laval. Sa thèse porte sur l’adoption de l’intelligence artificielle par les enseignants et enseignantes du postsecondaire ainsi que sur leur niveau de littératie par rapport à son fonctionnement.

Léo Nebel, Edtech EvidenceB

Léo Nebel  est doctorant en dispositif CIFRE au sein de l’équipe MOCAH du laboratoire du LIP6 de Sorbonne Université et de l’entreprise Edtech EvidenceB. Il travaille actuellement sur l’analyse automatique de productions textuelles d’étudiants et la proposition de rétroactions adaptées. Ces premiers travaux de recherche se concentrent notamment sur le processus de révision du texte.

References

Aiken, R. M., & Epstein, R. G. (2000). Ethical guidelines for AI in education : Starting a conversation. International Journal of Artificial Intelligence in Education, 11, 163-176.

Akrich, M. (1987). Comment décrire les objets techniques? Techniques et culture, 9, 49-64.

Bruneault, F., Laflamme, A. S., & Mondoux, A. (2022). Former à l’éthique de l’IA en enseignement supérieur : référentiel de compétence. Document non publié. https://collimateur.uqam.ca/collimateur/former-a-lethique-de-lia-en-enseignement-superieur-referentiel-de-competence/

Chen, X., Xie, H., & Hwang, G. J. (2020). A multi-perspective study on artificial intelligence in education : Grants, conferences, journals, software tools, institutions, and researchers. Computers and Education. Artificial Intelligence, 1. https://doi.org/10.1016/j.caeai.2020.100005

Commission européenne. (2022). Lignes directrices éthiques sur l’utilisation de l’intelligence artificielle et des données dans l’enseignement et l’apprentissage à l’intention des éducateurs.

Corbin, J., & Strauss, A. (2008). Basics of qualitative research (3e éd.). Sage.

de Munck, J. (2011). Les trois dimensions de la sociologie critique. SociologieS. https://doi.org/10.4000/sociologies.3576

Dignum, V., Baldoni, M., Baroglio, C., Caon, M., Chatila, R., Dennis, L., Génova, G., Haim, G., Kließ, M. S., Lopez-Sanchez, M., Micalizio, R., Pavón, J., Slavkovik, M., Smakman, M., van Steenbergen, M., Tedeschi, S., van der Toree, L., Villata, S., & de Wildt, T. (2018, décembre). Ethics by design : Necessity or curse? Dans Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (p. 60-66). https://doi.org/10.1145/3278721.3278745

Dilhac, M.-A., Abrassart, C., & Voarino, N. (2018, dir.). Rapport de la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle. Document non publié. https://docs.wixstatic.com/ugd/ebc3a3_d806f109c4104c91a2e719a7bef77ce6.pdf

Doroudi, S. (2022). The intertwined histories of artificial intelligence and education. International Journal of Artificial Intelligence in Education, 33, 1-44. https://doi.org/10.1007/s40593-022-00313-2

Institute for Ethical AI in Education. (2020). Ethical Framework for AI in Education.

Granjon, F. (2015). ‪ Du matérialisme comme principium d’un agenda de la recherche critique en communication‪. Questions de communication, 2, 157-190.‬‬‬‬‬‬‬‬ https://doi.org/10.4000/questionsdecommunication.10096‬‬‬‬‬‬‬‬

Hao, K. (2020, août). The UK exam debacle reminds us that algorithms can’t fix broken system. MIT Technology Review. https://www.technologyreview.com/2020/08/20/1007502/uk-exam-algorithm-cant-fix-broken-system/

Iphofen, R., & Kritikos, M. (2021). Regulating artificial intelligence and robotics : Ethics by design in a digital society. Contemporary Social Science, 16(2), 170 184. https://doi.org/10.1080/21582041.2018.1563803

Krutka, D. G., Smits, R. M., & Willhelm, T. A. (2021). Don’t be evil : Should we use Google in schools? TechTrends, 65(4), 421-431. https://doi.org/10.1007/s11528-021-00599-4

Landry, R., Becheikh, N., Amara, N., Ziam, S., Idrissi, O., & Castonguay, Y. (2009). La recherche, comment s’y retrouver? Revue systématique des écrits sur le transfert de connaissances en éducation. Gouvernement du Québec. http://eduq.info/xmlui/handle/11515/31693

Law, J. (dir.). (1991). A sociology of monsters : Essays on power, technology, and domination. Routledge.

Le Bossé, Y. (2003). De l’« habilitation » au « pouvoir d’agir » : vers une appréhension plus circonscrite de la notion d’empowerment. Nouvelles pratiques sociales, 16(2), 30 51. https://doi.org/10.7202/009841ar

Li, S., Yan, M., Zhang, X., & Li, Z. (2020, novembre). Analysis on the application of AI technology in online education under the public epidemic crisis. Dans International Conference on Innovative Technologies and Learning (p. 296-305). Springer.

MacKenzie, D., & Wajcman, J. (1999). The social shaping of technology. Open University Press. http://eprints.lse.ac.uk/id/eprint/28638

Marchildon, A. (2017). Le pouvoir de déployer la compétence éthique. Éthique publique, 19(1). https://doi.org/10.4000/ethiquepublique.2920

Marx, K. (1867/2020). Le capital. CreateSpace Independent Publishing Plateform.

Métais, F. (2018). Du contact éthique à l’heure des dispositifs « autonomes ». Revue francaise d’éthique appliquee, 5(1), 54-66. https://doi.org/10.3917/rfeap.005.0054

Oudshoorn, N., Rommes, E., & Stienstra, M. (2004). Configuring the user as everybody : Gender and design cultures in information and communication technologies. Science, Technology et Human Values, 29(1), 30-63. https://doi.org/10.1177/0162243903259190

Oudshoorn, N., Neven, L., & Stienstra, M. (2016). How diversity gets lost : Age and gender in design practices of information and communication technologies. Journal of Women & Aging, 28(2), 170-185. https://doi.org/10.1080/08952841.2015.1013834

Renz, A., & Hilbig, R. (2020). Prerequisites for artificial intelligence in further education : Identification of drivers, barriers, and business models of educational technology companies. International Journal of Educational Technology in Higher Education, 17(1), 1-21. https://doi.org/10.1186/s41239-020-00193-3

Rienties, B., Køhler Simonsen, H., & Herodotou, C. (2020, juillet). Defining the boundaries between artificial intelligence in education, computer-supported collaborative learning, educational data mining, and learning analytics : A need for coherence. Dans Frontiers in Education (vol. 5, p. 128). Frontiers Media SA. https://doi.org/10.3389/feduc.2020.00128

Roqueplo, P. (1983). Penser la technique. Pour une démocratie concrète. Seuil.

Self, J. (2016). The birth of IJAIED. International Journal of Artificial Intelligence in Education, 26(1), 4 12. https://doi.org/10.1007/s40593-015-0040-5

Selwyn, N. (2010). Looking beyond learning : Notes towards the critical study of educational technology. Journal of Computer Assisted Learning, 26(1), 65-73. https://doi.org/10.1111/j.1365-2729.2009.00338.x

UNESCO. (2019). Consensus de Beijing sur l’intelligence artificielle et l’éducation.

Verdegem, P. (2021). Introduction : Why we need critical perspectives on AI. Dans P. Verdegem (dir.), AI for Everyone? Critical Perspectives (p. 1-18). University of Westminster Press. https://doi.org/10.16997/book55.a

Williamson, B., & Eynon, R. (dir.) (2020). Editorial: historical threads, missing links, and future directions in AI in education. Learning, Media and Technology, 45(3). https://doi.org/10.1080/17439884.2020.1798995

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0

Zhang, K., & Aslan, A. B. (2021). AI technologies for education : Recent research & future directions. Computers and Education. Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100025

Published

2024-02-06