Examining Canadian Undergraduates’ Perspectives with Using GenAI for Learning
DOI:
https://doi.org/10.21432/cjlt29124Keywords:
generative artificial intelligence, higher education, qualitative research, self-regulated learningAbstract
The rapid emergence of generative artificial intelligence (GenAI) tools presents new opportunities and challenges for higher education, yet little is known about how undergraduate students choose to engage with these technologies. This study examined Canadian undergraduates’ perspectives on GenAI as a learning support across three phases of the lecture cycle: before, during, and after class. Using a mixed-format survey (N = 296), we analyzed 118 student-written responses through Mayring’s qualitative content analysis and mapped themes onto Zimmerman’s model of Self-Regulated Learning (SRL). Results indicate that students see GenAI as a versatile cognitive partner—supporting preparation before lectures, engagement and clarification during, and review and assignment help afterward. Students also expressed critical concerns about overreliance, accuracy, academic integrity, and data privacy, which align with vulnerabilities in SRL processes such as self-control, self-evaluation, and help-seeking. Findings highlight a conceptual shift from institutional framings of GenAI as a production tool toward student framings of GenAI as a mechanism for intellectual capacity building. We argue that deliberate integration of GenAI into teaching practices and institutional policies—aligned with SRL subprocesses—can support responsible, student-informed adoption. The study contributes timely evidence for educators and policymakers navigating the pedagogical and ethical dimensions of GenAI in postsecondary learning.
References
Ally, M., & Mishra, S. (2025). Policies for artificial intelligence in higher education: A call for action. Canadian Journal of Learning and Technology, 50(3). https://doi.org/10.21432/cjlt28869
Ammari, T., Chen, M., Zaman, S. M. M., & Garimella, K. (2025). How students (really) use ChatGPT: Uncovering experiences among undergraduate students [Preprint]. arXiv. https://arxiv.org/abs/2505.24126
Aure, P., & Cuenca, O. (2024). Fostering social-emotional learning through human-centered use of generative AI in business research education: An insider case study. Journal of Research in Innovative Teaching & Learning, 17(2), 168–181. https://doi.org/10.1108/JRIT-03-2024-0076
Bittle, K., & El-Gayar, O. (2025). Generative AI and academic integrity in higher education: A systematic review and research agenda. Information, 16(4), Article 296. https://doi.org/10.3390/info16040296
Chambers, L., & Owen, W. J. (2024). The efficacy of GenAI tools in postsecondary education. Brock Education: A Journal of Educational Research and Practice, 33(3), 57–74. https://doi.org/10.26522/brocked.v33i3.1178
Chiu, T. K. (2025). Instructional designs for AI interdisciplinary learning. In Empowering K-12 education with AI. Taylor & Francis. https://doi.org/10.4324/9781003498377
Chiu, T. K. F. (2024). A classification tool to foster self-regulated learning with generative artificial intelligence by applying self-determination theory: A case of ChatGPT. Educational Technology Research and Development, 72, 2401–2416. https://doi.org/10.1007/s11423-024-10366-w
Daniel, K., Msambwa, M. M., & Wen, Z. (2025). Can generative AI revolutionise academic skills development in higher education? A systematic literature review. European Journal of Education, 60(1), e70036. https://doi.org/10.1111/ejed.70036
Eacersall, D., Pretorius, L., Smirnov, I., Spray, E., Illingworth, S., Chugh, R., Strydom, S., Stratton-Maher, D., Simmons, J., Jenning, I., Roux, R., Kamrowski, R., Downie, A., Thong, C. L., & Howell, K. A. (2024). Navigating ethical challenges in generative AI-enhanced research: The ETHICAL framework for responsible generative AI use (arXiv Preprint No. 2501.09021). arXiv. https://arxiv.org/abs/2501.09021
Fayaza, M. F., Senthilrajah, T., Wijesinghe, U., & Ahangama, S. (2025, February). Role of GenAI in student knowledge enhancement: Learner perception. In 2025 5th International Conference on Advanced Research in Computing (ICARC) (pp. 1-6). IEEE.
Golding, J. M., Lippert, A., Neuschatz, J. S., Salomon, I., & Burke, K. (2024). Generative AI and college students: Use and perceptions. Teaching of Psychology, 52(3), 369–380. https://doi.org/10.1177/00986283241280350
Greene, J. A., & Azevedo, R. (2007). A theoretical review of Winne and Hadwin’s model of self-regulated learning: New perspectives and directions. Review of Educational Research, 77(3), 334–372. https://doi.org/10.3102/003465430303953
Guillén-Yparrea, N., & Hernández-Rodríguez, F. (2024). Unveiling generative AI in higher education: Insights from engineering students and professors. In 2024 IEEE Global Engineering Education Conference (EDUCON) (pp. 1–5). https://doi.org/10.1109/EDUCON60312.2024.10578876
Hamerman, E. J., Aggarwal, A., & Martins, C. M. (2025). An investigation of generative AI in the classroom and its implications for university policy. Quality Assurance in Education, 33(2), 253–266. https://doi.org/10.1108/QAE-08-2024-0149
Holechek, S., & Sreenivas, V. (2024). Abstract 1557: Generative AI in undergraduate academia: Enhancing learning experiences and navigating ethical terrains. Journal of Biological Chemistry, 300(3), 105921. https://doi.org/10.1016/j.jbc.2024.105921
Huang, D., Huang, Y., & Cummings, J. J. (2024). Exploring the integration and utilisation of generative AI in formative e-assessments: A case study in higher education. Australasian Journal of Educational Technology, 40(4), 1–120. https://doi.org/10.14742/ajet.9467
Johnson, D. M., Doss, W., & Estepp, C. M. (2024). Agriculture students’ use of generative artificial intelligence for microcontroller programming. Natural Sciences Education, 53, e20155. https://doi.org/10.1002/nse2.20155
Johnston, H., Wells, R. F., Shanks, E. M., Boey, T., & Parsons, B. N. (2024). Student perspectives on the use of generative artificial intelligence technologies in higher education. International Journal for Educational Integrity 20(2). https://doi.org/10.1007/s40979-024-00149-4
Johri, A., Hingle, A., & Schleiss, J. (2024). Misconceptions, pragmatism, and value tensions: Evaluating students' understanding and perception of generative AI for education. In 2024 IEEE Frontiers in Education Conference (FIE) (pp. 1–9). IEEE. https://doi.org/10.1109/FIE61694.2024.10893017
Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures and software solution. Klagenfurt. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173
Mayring, P. (2021). Qualitative content analysis: A step-by-step guide. Sage Publications.
Pan, M., Lai, C., & Guo, K. (2025). Effects of GenAI-empowered interactive support on university EFL students' self-regulated strategy use and engagement in reading. The Internet and Higher Education, 65, 100991. https://doi.org/10.1016/j.iheduc.2024.100991
Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in Psychology, 8, 422. https://doi.org/10.3389/fpsyg.2017.00422
Qu, X., Sherwood, J., Liu, P., & Aleisa, N. (2025, April). Generative AI tools in higher education: Ameta-analysis of cognitive impact. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (pp. 1–9). https://doi.org/10.1145/3706599.3719841
Qu, Y., Tan, M. X. Y., & Wang, J. (2024). Disciplinary differences in undergraduate students’ engagement with generative artificial intelligence. Smart Learning Environments, 11, Article 51. https://doi.org/10.1186/s40561-024-00341-6
Razmerita, L. (2024). Human-AI collaboration: A student-centered perspective of generative AI use in higher education. In Proceedings of the European Conference on e-Learning, 320–329. https://doi.org/10.34190/ecel.23.1.3008
Sajja, R., Sermet, Y., Fodale, B., & Demir, I. (2025). Evaluating AI-powered learning assistants in engineering higher education: Student engagement, ethical challenges, and policy implications [Preprint]. arXiv. https://arxiv.org/abs/2506.05699
Shaw, C., Yuan, L., Brennan, D., Martin, S., Janson, N., Fox, K., & Bryant, G. (2023, October 23). Generative AI in higher education. Tyton Partners. https://tytonpartners.com/time-for-class-2023/GenAI-Update
Soliman, M., Ali, R. A., Khalid, J., Mahmud, I., & Ali, W. B. (2025). Modelling continuous intention to use generative artificial intelligence as an educational tool among university students: Findings from PLS SEM and ANN. Journal of Computers in Education, 12, 897–928. https://doi.org/10.1007/s40692-024-00333-y
Sun, L., & Zhou, L. (2024). Does generative artificial intelligence improve the academic achievement of college students? A Meta-analysis. Journal of Educational Computing Research, 62(7), 1676–1713. https://doi.org/10.1177/07356331241277937
Tang, M., Dong, J., & Cheng, S. (2025, June). Assessing university students’ acceptance of generative artificial intelligence based on the UTAUT Model. In Proceedings of the 2025 4th International Conference on Educational Innovation and Multimedia Technology (EIMT 2025) (pp. 285–291). Atlantis Press. https://doi.org/10.2991/978-94-6463-750-2_27
Wang, C., Wang, H., Li, Y., Dai, J., Gu, X., & Yu, T. (2024). Factors influencing university students’ behavioral intention to use generative artificial intelligence: Integrating the theory of planned behavior and AI literacy. International Journal of Human–Computer Interaction, 41(11), 6649–6671. https://doi.org/10.1080/10447318.2024.2383033
Wang, K. D., Wu, Z., Tufts II, L. N., Wieman, C., Salehi, S., & Haber, N. (2024). Scaffold or crutch? Examining college students’ use and views of generative AI tools for STEM education [Preprint]. arXiv. https://arxiv.org/abs/2412.02653
Wu, X.-Y., & Chiu, T. K. F. (2025). Integrating learner characteristics and generative AI affordances to enhance self regulated learning: A configurational analysis. Journal of New Approaches in Educational Research, 14, Article 10. https://doi.org/10.1007/s44322-025-00028-x
Xu, X., Qiao, L., Cheng, N., Liu, H., & Zhao, W. (2025). Enhancing self‐regulated learning and learning experience in generative AI environments: The critical role of metacognitive support. British Journal of Educational Technology, 56(5), 1842–1863. https://doi.org/10.1111/bjet.13599
Yang, X., Liu, X., & Gao, Y. (2025). The impact of Generative AI on students’ learning: A study of learning satisfaction, self-efficacy and learning outcomes. Educational Technology Research and Development. Advance online publication. https://doi.org/10.1007/s11423-025-10540-8
Yusuf, A., Pervin, N., Román-González, M., & Noor, N. M. (2024). Generative AI in education and research: A systematic mapping review. Review of Education, 12, e3489. https://doi.org/10.1002/rev3.3489
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-Regulation (pp. 13–39). Academic Press. https://doi.org/10.1016/B978-012109890-2/50031-7
Published
Issue
Section
License
Copyright (c) 2025 Ann-Kathrin Grenz, Soroush Sabbaghan, Michele Jacobsen

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Notice
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an International Creative Commons Attribution-NonCommercial License (CC-BY-NC 4.0) that allows others to share the work for non-commercial purposes, with an acknowledgement of the work's authorship and initial publication in this journal.




