Conception pédagogique : Rapprocher la théorie de l'apprentissage et l'analyse de l'apprentissage

Auteurs-es

  • Kazem Banihashem Wageningen University and Research
  • Leah P. Macfadyen The University of British Columbia

DOI :

https://doi.org/10.21432/cjlt27959

Mots-clés :

épistémologie, analyse de l'apprentissage, théorie de l'apprentissage, conception pédagogique, conception de l'apprentissage, conception de l'écosystème d'apprentissage

Résumé

Quelle approche de l'analyse de l'apprentissage pourrait être le meilleur choix pour votre contexte d'enseignement et d'apprentissage ? L'analyse de l'apprentissage, en tant que domaine de recherche et d'application, cherche à collecter, analyser, rapporter et interpréter les données éducatives dans le but d'améliorer l'enseignement et l'apprentissage. Cependant, l'adoption précipitée d'outils et de méthodes d'analyse de l'apprentissage qui sont simplement pratiques, promus ou disponibles risque de permettre à l'analyse de l'apprentissage de "conduire le bus pédagogique". Dans cet article, nous proposons qu'une réflexion approfondie sur les choix de conception pédagogique et la théorie de l'apprentissage qui les sous-tend puisse et doive éclairer la sélection d'outils et d'approches d'analyse de l'apprentissage pertinents. Nous examinons de manière générale les théories de l'apprentissage établies et les implications de chacune d'entre elles pour la conception pédagogique ; pour chaque approche de conception, nous proposons des exemples d'analyse de l'apprentissage les plus clairement alignés avec les perspectives théoriques sur l'apprentissage et la connaissance qui l'ont façonnée. En outre, nous soutenons qu'un examen attentif de la théorie de l'apprentissage qui sous-tend la pragmatique des choix de conception pédagogique devrait guider la mise en œuvre des analyses de l'apprentissage et aider les éducateurs et les concepteurs à éviter le risque de recueillir des données sur des activités qui ne sont pas pertinentes pour leur conception ou leurs objectifs pédagogiques, et de mesurer les résultats de ces activités.

Bibliographies de l'auteur-e

Kazem Banihashem, Wageningen University and Research

Seyyed Kazem Banihashem holds a doctorate in the field of educational technology from Allameh Tabataba’i University, Iran. He is currently a postdoctoral researcher at Wageningen University and Research, in the Netherlands. His research interests include learning analytics, learning theories, learning design, and feedback.

Leah P. Macfadyen, The University of British Columbia

Leah P. Macfadyen is Assistant Professor of Teaching in the Department of Language and Literacy Education, and Associate Director of the Master of Educational Technology Program, in the Faculty of Education of the University of British Columbia in Vancouver, Canada. Her research interests include virtual intercultural communication, eLearning design, and learning analytics.

Références

Akdeniz, C. (Ed.) (2016). Instructional process and concepts in theory and practice. Improving the teaching process. Springer Science.

Altun, S., & Büyükduman, F. I. (2007). Teacher and student beliefs on constructivist instructional design: A case study. Kuram ve Uygulamada Egitim Bilimleri, 7(1), 30-39.

Banihashem, S. K., & Aliabadi, K. (2017). Connectivism: Implications for distance education. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 8(3). http://dx.doi.org/10.5812/IJVLMS.10030

Banihashem S. K., Aliabadi K., Pourroostaei Ardakani S., Delavar, A., & Nili Ahmadabadi, M. R. (2018). Learning analytics: A systematic literature review. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 9(2). https://dx.doi.org/10.5812/ijvlms.63024

Banihashem, S. K., Aliabadi, K., Pourroostaei Ardakani, S., Nili AhmadAbadi, M. R., & Delavar, A. (2019). Investigation on the role of learning theory in learning analytics. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 10(4), 14-27. http://dx.doi.org/10.30476/IJVLMS.2019.84294.1001

Barron, A. B., Hebets, E. A., Cleland, T. A., Fitzpatrick, C. L., Hauber, M. E., & Stevens, J. R. (2015). Embracing multiple definitions of learning. Trends in Neurosciences, 38(7), 405-407. https://dx.doi.org/10.1016/j.tins.2015.04.008

Bell, F. (2009). Connectivism: A network theory for teaching and learning in a connected world. Educational Developments, The Magazine of the Staff and Educational Development Association, 10(3). http://usir.salford.ac.uk/id/eprint/2569/

Bell, F. (2011). Connectivism: Its place in theory-informed research and innovation in technology-enabled learning. The International Review of Research in Open and Distributed Learning, 12(3), 98. https://dx.doi.org/10.19173/irrodl.v12i3.902

Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational data mining and learning analytics: Applications to constructionist research. Technology, Knowledge and Learning, 19(1-2), 205-220. https://doi.org/10.1007/s10758-014-9223-7

Boghossian, P. (2013). Behaviorism, constructivism, and Socratic pedagogy. Educational Philosophy and Theory, 38(6), 713-722. https://doi.org/10.1111/j.1469-5812.2006.00226.x

Branch, R. M. (2009). Instructional design: The ADDIE approach. Springer Science & Business Media.

Brown, A. H., & Green, T. D. (2019). The essentials of instructional design: Connecting fundamental principles with process and practice. Routledge.

Brown, J. S. (2000). Growing up digital: How the web changes work, education, and the ways people learn. USDLA journal, 16(2), n2. https://doi.org/10.1080/00091380009601719

Buckingham Shum, S., & Ferguson, R. (2011). Social learning analytics. The Open University, UK: Knowledge Media Institute. http://kmi.open.ac.uk/publications/pdf/kmi-11-01.pdf

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. BSCS. https://bscs.org/resources/reports/the-bscs-5e-instructional-model-origins-and-effectiveness/

Chatti, M. A. (2010). The LaaN theory. In Personalization in technology enhanced learning: A social software perspective (pp. 19-42). Shaker Verlag. http://mohamedaminechatti.blogspot.com/2013/01/the-laan-theory.html

Chen, P.-S. D., Lambert, A. D., & Guidry, K. R. (2010). Engaging online learners: The impact of web-based learning technology on college student engagement. Computers & Education, 54(4), 1222-1232. https://doi.org/10.1080/13562517.2013.827653

Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683-695. https://doi.org/10.1080/13562517.2013.827653

Conole, G. (2012). Designing for learning in an open world. New York, USA: Springer Science & Business Media.

Cooper, P. A. (1993). Paradigm shifts in designed instruction: From behaviorism to cognitivism to constructivism. Educational Technology, 33(5), 12-19. https://www.jstor.org/stable/44428049

Crosslin, M., Dellinger, J. T., Joksimovic, S., Kovanovic, V., & Gaševic, D. (2018). Customizable modalities for individualized learning: Examining patterns of engagement in dual-layer MOOCs. Online Learning, 22(1), 19-38. http://dx.doi.org/10.24059/olj.v22i1.1080

Currie, G. (2004). Cognitivism. In T. Miller & R. Stam (Eds.), A companion to film theory (pp. 105-122). John Wiley & Sons.

Dawson, S. (2009). ‘Seeing’ the learning community: An exploration of the development of a resource for monitoring online student networking. British Journal of Educational Technology, 41(5), 736-752. http://dx.doi.org/10.1111/j.1467-8535.2009.00970.x

Dick, W., Carey, L., & Carey, J. O. (2005). The systematic design of instruction. Pearson/Allyn and Bacon.

Downes, S. (2008). An introduction to connective knowledge. Media, Knowledge & Education: Exploring new Spaces, Relations and Dynamics in Digital Media Ecologies (pp. 77-102). Innsbruck University Press. https://www.oapen.org/search?identifier=449459

Duke, B., Harper, G., & Johnston, M. (2013). Connectivism as a digital age learning theory? The International HETL Review, 2013(Special Issue), 4-13. https://www.hetl.org/wp-content/uploads/2013/09/HETLReview2013SpecialIssueArticle1.pdf

Dunaway, M. K. (2011). Connectivism: Learning theory and pedagogical practice for networked information landscapes. Reference Services Review, 39(4), 675-685. https://doi.org/10.1108/00907321111186686

Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 26(2), 43-71. https://dx.doi.org/10.1002/piq.21143

Ferguson, R., & Clow, D. (2017). Where is the evidence? A call to action for learning analytics. Seventh International Conference on Learning Analytics & Knowledge (pp. 56-65). ACM. https://doi.org/10.1145/3027385.3027396

Gagné, R. M. (1965). Conditions of learning. Holt McDougal.

Gagnon, G. W., & Collay, M. (2005). Constructivist learning design: Key questions for teaching to standards. Corwin Press.

Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education, 28, 68-84. https://doi.org/10.1016/j.iheduc.2015.10.002

Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64-71. https://dx.doi.org/10.1007/s11528-014-0822-x

Gütl, C., & Chang, V. (2008). Ecosystem-based theoretical models for learning in environments of the 21st century. International Journal of Emerging Technologies in Learning (iJET), 3(2008). http://dx.doi.org/10.3991/ijet.v3i1.742

Halttunen, K. (2011). Pedagogical design and evaluation of interactive information retrieval learning environment. In E. Efthimiadis, J. Fernández-Luna, J. Huete, & A. MacFarlane (Eds.), Teaching and learning in information retrieval (pp. 61-73). Springer.

Heinich, R., Molenda, M., Russell, J., & Smaldino, S. (1999). Instructional media and technologies for learning (6th ed.). Prentice Hall.

Ifenthaler, D., Gibson, D., & Dobozy, E. (2018). Informing learning design through analytics: Applying network graph analysis. Australasian Journal of Educational Technology, 34(2). https://doi.org/10.14742/ajet.3767

Jonassen, D. H. (1991). Objectivism versus constructivism: Do we need a new philosophical paradigm? Educational Technology Research and Development, 39(3), 5-14. https://doi.org/10.1007/BF02296434

Jonassen, D. H. (1999). Designing constructivist learning environments. In C. M. Reigeluth (Ed.), Instructional-design theories and models: A new paradigm of instructional theory (pp. 215-239). Lawrence Erlbaum Associates.

Kizito, R. N. (2016). Connectivism in learning activity design: Implications for pedagogically-based technology adoption in African higher education contexts. International Review of Research in Open and Distributed Learning, 17(2), 19-39. https://doi.org/10.19173/irrodl.v17i2.2217

Knight, S., Buckingham Shum, S., & Littleton, K. (2013). Epistemology, pedagogy, assessment and learning analytics. Proceedings, Third International Conference on Learning Analytics and Knowledge (pp. 75-84). ACM. https://doi.org/10.1145/2460296.2460312

Knight, S., Shum, S. B., & Littleton, K. (2014). Epistemology, assessment, pedagogy: Where learning meets analytics in the middle space. Journal of Learning Analytics, 1(2), 23‐47. https://doi.org/10.18608/jla.2014.12.3

Koh, E., Shibani, A., Tan, J. P.-L., & Hong, H. (2016). A pedagogical framework for learning analytics in collaborative inquiry tasks: An example from a teamwork competency awareness program. Proceedings, Sixth International Conference on Learning Analytics & Knowledge (pp. 74-83). ACM. https://doi.org/10.1145/2883851.2883914

Kop, R., & Hill, A. (2008). Connectivism: Learning theory of the future or vestige of the past? The International Review of Research in Open and Distributed Learning, 9(3). https://doi.org/10.19173/irrodl.v9i3.523

Levers, M.-J. D. (2013). Philosophical paradigms, grounded theory, and perspectives on emergence. SAGE Open, 3(4), 1-6. https://doi.org/10.1177/2158244013517243

Long, P., & Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 45(6). Retrieved from https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education

Mazur, J. E. (2016). Learning and behavior (8th ed.). Routledge.

McNamara, D. S., Allen, L., Crossley, S., Dascalu, M., & Perret, C. A. (2017). Natural language processing and learning analytics. In C. Lang, G. Siemens, A. Wise, & D. Gašević (Eds.), Handbook of learning analytics (1st ed., pp. 93-104). Society for Learning Analytics Research (SoLAR). https://doi.org/10.18608/hla17.008

Mergel, B. (1998). Instructional design and learning theory. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.7122&rep=rep1&type=pdf

Merrill, M. D. (1991). Constructivism and instructional design. Educational Technology, 31(5), 45-53. https://www.jstor.org/stable/44427520

Merrill, M. D. (2002). First principles of instruction. Educational Technology Research and Development, 50(3), 43-59. https://doi.org/10.1007/BF02505024

Mohammadi, M., Moenikia, M., & Zahed-Babelan, A. (2010). The role of advance organizer on English language learning as a second language. Procedia-Social and Behavioral Sciences, 2(2), 4667-4671. https://doi.org/10.1016/j.sbspro.2010.03.747

Mor, Y., & Craft, B. (2012). Learning design: Reflections upon the current landscape. Research in Learning Technology, 20, 85-94. https://doi.org/10.3402/rlt.v20i0.19196

Mor, Y., Craft, B., & Maina, M. (2015). Introduction: Learning design: Definitions, current issues and grand challenges. In Y. Mor, B. Craft, & M. Maina (Eds.), The art & science of learning design (pp. ix-xxvi). Sense.

Morrison, G. R., Ross, S. J., & Kemp, J. E. (2004). Designing effective instruction (4th ed.). John Wiley & Sons.

Papadakis, S. (2012). Enabling creative blended learning for adults through learning design. In P. S. Anastasiades (Ed.), Blended learning environments for adults: Evaluations and frameworks (pp. 257-273). IGI Global.

Parker, K. H. (2009). Constructivist learning design: A qualitative study of learning theory and at-rsk student academic success. [Doctoral dissertation, Capella University]. Available from ProQuest Dissertations and Theses database (3355349). https://www.proquest.com/openview/acfa703c696a3e9a9148a5f8a0262016/1?pq-origsite=gscholar&cbl=18750

Perelmutter, B., McGregor, K. K., & Gordon, K. R. (2017). Assistive technology interventions for adolescents and adults with learning disabilities: An evidence-based systematic review and meta-analysis. Computers & Education, 114, 139-163. https://doi.org/10.1016/j.compedu.2017.06.005

Pradhan, A. (2016, February 19). 6 steps to creating learning ecosystems (why you should bother). https://learnnovators.com/blog/6-steps-to-creating-learning-ecosystems-and-why-you-should-bother/.

Prasertsilp, P. (2013). Mobile learning: designing a socio-technical model to empower learning in higher education. LUX: A Journal of Transdisciplinary Writing and Research from Claremont Graduate University, 2(1), 23. https://scholarship.claremont.edu/lux/vol2/iss1/23/

Reiser, R. A., & Dempsey, J. V. (2007). Trends and issues in instructional design and technology. Allyn & Bacon.

Richardson, A. (2002). An ecology of learning and the role of elearning in the learning environment. Global Summit of Online Knowledge Networks, (pp. 47-51). Education.au Limited.

Romiszowski, A. J. (2016). Designing instructional systems: Decision making in course planning and curriculum design. Routledge.

Rosé, C. P., Ferschke, O., Tomar, G., Yang, D., Howley, I., Aleven, V., . . . Baker, R. (2015). Challenges and opportunities of dual-layer MOOCs: Reflections from an edX deployment study. 11th International Conference on Computer Supported Collaborative Learning (CSCL 2015) (pp. 848-851). International Society of the Learning Sciences, Inc. https://84.38.64.180/data/publications/2015/RoseCSCL2015.pdf

Saadatmand, M. (2017). A new ecology for learning: An online ethnographic study of learners’ participation and experience in connectivist MOOCs. [Doctoral dissertation, University of Helsinki]. http://urn.fi/URN:ISBN:978-951-51-3191-1

Sawyer, R. (2014). Introduction: The new science of learning. In R. Sawyer (Ed.), The Cambridge handbook of the learning sciences (Cambridge Handbooks in Psychology, pp. 1-18). Cambridge University Press. https://doi.org/10.1017/CBO9781139519526.002

Schott, F., & Seel, N. M. (2015). Instructional design. In International encyclopedia of the social & behavioral sciences (2nd ed., pp. 196-200). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.92032-4

Seel, N. M., Lehmann, T., Blumschein, P., & Podolskiy, O. A. (2017). Instructional design for learning: Theoretical foundations. Sense.

Shaffer, D. W., Collier, W., & Ruis, A. R. (2016). A tutorial on epistemic network analysis: Analyzing the structure of connections in cognitive, social, and interaction data. Journal of Learning Analytics, 3(3), 9-45. https://doi.org/10.18608/jla.2016.33.3

Shaffer, D. W., & Ruis, A. (2017). Epistemic network analysis: A worked example of theory-based learning analytics. In C. Lang, G. Siemens, A. F. Wise, & D. Gaševic (Eds.), The Handbook of Learning Analytics (1st ed., pp. 175-187). Society for Learning Analytics Research (SoLAR). https://doi.org/10.18608/jla.2016.33.3

Shibani, A., Knight, S., & Shum, S. B. (2019). Contextualizable learning analytics design: A generic model and writing analytics evaluations. Proceedings of the Ninth International Conference on Learning Analytics & Knowledge (pp. 210-219). ACM. https://doi.org/10.1145/3303772.3303785

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning, 2(1), 3-10. https://www.itdl.org/Journal/Jan_05/Jan_05.pdf

Siemens, G. (2008). Learning and knowing in networks: Changing roles for educators and designers. ITFORUM for Discussion, 27, 1-26.

Siemens, G., Dawson, S., & Lynch, G. (2013). Improving the quality and productivity of the higher education sector. Policy and strategy for systems-level deployment of learning analytics. Society for Learning Analytics Research & Australian Government Office for Learning and Teaching. https://solaresearch.org/wp-content/uploads/2017/06/SoLAR_Report_2014.pdf

Siemens, G., & Tittenberger, P. (2009). Handbook of emerging technologies for learning. University of Manitoba.

Smith, M. (1999-2020). Learning theory. In M. Smith (Ed.), The encyclopedia of pedagogy and informal education. https://infed.org/mobi/learning-theory-models-product-and-process/

Smith, P. L., & Ragan, T. J. (2004). Instructional design. John Wiley & Sons.

Stauter, D. W., Prehn, J., Peters, M., Jeffries, L. M., Sylvester, L., Wang, H., & Dionne, C. (2019). Assistive technology for literacy in students with physical disabilities: A systematic review. Journal of Special Education Technology, 34(4), 284-292. https://doi.org/10.1177/0162643419868259

Stewart, C. (2017). Learning analytics: Shifting from theory to practice. Journal on Empowering Teaching Excellence, 1(1), 10. https://doi.org/10.15142/T3G63W

Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110. https://doi.org/10.1016/j.chb.2018.07.027

Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20(2), 158. https://doi.org/10.1037/h0074428

Weegar, M. A., & Pacis, D. (2012). A comparison of two theories of learning-behaviorism and constructivism as applied to face-to-face and online learning. Paper presented at the CASA e-leader conference, Manila, 2012. https://g-casa.com/conferences/manila/papers/Weegar.pdf

Wise, A. (2014). Designing pedagogical interventions to support student use of learning analytics. Proceedings, Fourth International Conference on Learning Analytics & Knowledge (pp. 203-211). ACM. https://doi.org/10.1145/2567574.2567588

Wong, J., Baars, M., de Koning, B. B., van der Zee, T., Davis, D., Khalil, M., . . . Paas, F. (2019). Educational theories and learning analytics: From data to knowledge. The whole is greater than the sum of its parts. In D. Ifenthaler, D. K. Mah, & J. K. Yau (Eds.), Utilizing learning analytics to support study success (pp. 3-25). Springer. http://dx.doi.org/10.1007/978-3-319-64792-0_1

Yilmaz, K. (2011). The cognitive perspective on learning: Its theoretical underpinnings and implications for classroom practices. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 84(5), 204-212. https://doi.org/10.1080/00098655.2011.568989

Publié-e

2021-08-09

Numéro

Rubrique

Notes