Préparer les éducateurs à enseigner et à créer avec l’intelligence artificielle générative

Auteurs-es

DOI :

https://doi.org/10.21432/cjlt28606

Mots-clés :

éducation à l’IA, littératie en IA, IA générative, conception pédagogique, formation des enseignants

Résumé

Les enseignants qui maîtrisent l’intelligence artificielle générative (IAG) voient leur productivité et leurs capacités d’enseignement augmenter. En cette période d’évolution rapide de l’IAG, il est nécessaire d’offrir aux enseignants de réelles possibilités d’apprentissage en ce sens afin qu’ils acquièrent la confiance et l’expertise nécessaires à l’utilisation créative et réfléchie de ces technologies. Cet article présente un cas de figure illustrant l’acquisition par des enseignants en formation initiale et en poste de connaissances, de compétences et de l’état d’esprit nécessaires pour enseigner et créer à partir des outils d’intelligence artificielle. Nous avons analysé le programme ainsi que le type d’enseignement et d’évaluation d’un cours de premier cycle en conception et production multimédia, avec l’objectif d’étudier les pratiques professionnelles à partir d’une méthode d’auto-évaluation. Trente-cinq enseignants ont participé à des activités d’apprentissage par l’expérience axées sur le développement d’une culture de l’intelligence artificielle (IA), parallèlement à une collaboration en vue de la rédaction d’un manuel en libre accès, intitulé Teaching and Creating With Generative Artificial Intelligence (Enseigner et créer avec l’intelligence artificielle générative). Le cadre SAIL (Student Artificial Intelligence Literacy) a été créé pour favoriser un accès équitable et inclusif aux avantages éducatifs offerts par l’IA. SAIL facilite l’apprentissage de l’intelligence artificielle grâce à une implication dans le programme d’études et à trois types d’interactions distinctes : cognitive, socioémotionnelle et guidée par l’enseignant. À partir des leçons tirées de la pandémie de COVID-19 concernant les problèmes de formation à la technologie des enseignants au Canada, cinq recommandations sont proposées pour faciliter l’intégration réelle de la connaissance de l’IA dans les programmes de formation des enseignants.

Bibliographies de l'auteur-e

Paula MacDowell, University of Saskatchewan

Paula MacDowell is an Assistant Professor in the Department of Curriculum Studies at the University of Saskatchewan in Canada. Her area of specialization is using extended reality (XR) and AI to empower people to learn, connect, and create in meaningful ways. She is recognized for her research in educational technology and design for pro-social and environmental change.

Kristin Moskalyk, University of Saskatchewan

Kristin Moskalyk is an Instructional Designer and Ph.D. student in the College of Education at the University of Saskatchewan in Canada, specializing in educational technology and design. With expertise in enhancing education through innovative methodologies, her research focuses on integrating AI-adaptive algorithms into virtual reality to personalize the learning experience.

Katrina Korchinski, University of Saskatchewan

Katrina Korchinski holds a Master of Education specializing in educational technology and design (ETAD). Her research interest centres on supporting secondary student writing using AI tools. She has worked as a secondary English language arts and history teacher for 17 years.

Dirk Morrison, University of Saskatchewan

Dirk Morrison is an Associate Professor in the Department of Curriculum Studies at the University of Saskatchewan in Canada. His research interests include instructional design, distance and e-learning, educational technology in higher education, non-formal and informal online learning environments, and the effects of information and communications technology (ICT) on culture and society.

Références

Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI Ethics 2, 431–440. https://doi.org/10.1007/s43681-021-00096-7

Amazon Web Services. (n.d.). What is artificial general intelligence? https://aws.amazon.com/what-is/artificial-general-intelligence/

Bauschard, S. (2023, May 30). AI literacy: The immediate need and what it includes. Education Disrupted: Teaching and Learning in an AI World. https://stefanbauschard.substack.com/p/ai-literacy-the-immediate-need-and

Bauschard, S. (2024, May 20). Microsoft Copilot will hear, see, and speak. Education Disrupted: Teaching and Learning in an AI World. https://stefanbauschard.substack.com/p/microsoft-copilot-will-hear-see-and?triedRedirect=true

Bullock, S. M., & Butler, B. M. (2022). Reframing collaboration in self-study. In B. M. Butler & S. M. Bullock (Eds.), Learning through collaboration in self-study. Critical friendship, collaborative self-study, and self-study communities of practice (pp. 313–323). Springer. https://doi.org/10.1007/978-981-16-2681-4_22

Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., & Barro, S. (2023). AI literacy in K-12: A systematic literature review. International Journal of STEM Education, 10(1), Article 29. https://doi.org/10.1186/s40594-023-00418-7

Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66(4), 616–630. https://doi.org/10.1007/s11528-022-00715-y

Ciampa, K., Wolfe, Z. M., & Bronstein, B. (2023). ChatGPT in education: Transforming digital literacy practices. Journal of Adolescent & Adult Literacy, 67 (3), 186–195. https://doi.org/10.1002/jaal.1310

Cope, M., Kalantzis, M., & Searsmith, D. (2020). Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53(12), 1229–1245. https://doi.org/10.1080/00131857.2020.1728732

Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 26(2), 43–71. https://doi.org/10.1002/piq.21143

ETAD 402. (2023). Teaching and creating with generative AI. University of Saskatchewan. https://openpress.usask.ca/etad402teachingandcreatingwithgenai/

Francom, G. M., Lee, S. J., & Pinkney, H. (2021). Technologies, challenges and needs of K-12 teachers in the transition to distance learning during the COVID-19 pandemic. TechTrends, 65(4), 589–601. https://doi.org/10.1007/s11528-021-00625-5

Hagerman, M., Beach, P., Cotnam-Kappel, M., & Hébert, C. (2020). Multiple perspectives on digital literacies research methods in Canada. International Journal of E-Learning & Distance Education Revue Internationale Du E-Learning Et La Formation à Distance, 35(1). https://www.ijede.ca/index.php/jde/article/view/1159

Hervieux, S., & Wheatley, A. (2020, March 11). The ROBOT test [Evaluation tool]. The LibrAIry. https://thelibrairy.wordpress.com/2020/03/11/the-robot-test/

Hoechsmann, M., & Poyntz, S. (2017). Learning and teaching media literacy in Canada: Embracing and transcending eclecticism. Taboo: The Journal of Culture and Education, 12(1). https://doi.org/10.31390/taboo.12.1.04

Hollister, B., Nair, P., Hill-Lindsay, S., & Chukoskie, L. (2022). Engagement in online learning: Student attitudes and behavior during COVID-19. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.851019

Johnson, G. P. (2023). Don’t act like you forgot: Approaching another literacy “crisis” by (re)considering what we know about teaching writing with and through technologies. Composition Studies, 51(1), 169–175. https://compstudiesjournal.com/wp-content/uploads/2023/06/johnson.pdf

Kaplan-Rakowski, R., Grotewold, K., Hartwick, P., & Papin, K. (2023). Generative AI and teachers’ perspectives on its implementation in education. Journal of Interactive Learning Research, 34(2), 313–338. https://www.learntechlib.org/primary/p/222363/

Kim, J., Lee, H., & Cho, Y. H. (2022). Learning design to support student-AI collaboration: Perspectives of leading teachers for AI in education. Education and Information Technologies, 27, 6069–6104. https://doi.org/10.1007/s10639-021-10831-6/

Lock, J., Gill, D., Kennedy, T., Piper, S., & Powell, A. (2020). Fostering learning through making: Perspectives from the International Maker Education Network. International Journal of E-Learning & Distance Education Revue Internationale Du E-Learning Et La Formation à Distance, 35(1). https://www.ijede.ca/index.php/jde/article/view/1160/

Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In R. Bernhaupt, F. F. Mueller, D. Verweij, & J. Andres (Chairs), Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–16). Association for Computing Machinery. https://doi.org/10.1145/3313831.3376727

Loughran, J. (2005). Researching teaching about teaching: Self-study of teacher education practices. Studying Teacher Education, 1(1), 5–16. https://doi.org/10.1080/17425960500039777

MacDowell, P., & Korchinski, K. (2023). A collaborative future: New roles of students and teachers learning and creating with generative AI. In S. Bauschard, A. Rao, P. Shah, & C. Shryock (Eds.), Chat(GPT): Navigating the impact of generative AI technologies on educational theory and practice (pp. 490–507). Pedagogy Ventures.

MediaSmarts. (2023). Young Canadians in a wireless world, Phase IV: Digital media literacy and digital citizenship. https://mediasmarts.ca/research-reports

Nazaretsky, T., Ariely, M., Cukurova, M., & Alexandron, G. (2022). Teachers’ trust in AI-powered educational technology and a professional development program to improve it. British Journal of Educational Technology, 53(4), 914–931. https://doi.org/10.1111/bjet.13232

Park, J. (2023, May 29). A case study on enhancing the expertise of artificial intelligence education for pre-service teachers. Preprints, Article 2023052006. https://doi.org/10.20944/preprints202305.2006.v1

Pedró, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000366994

Prachagool, V., Nuangchalerm, P., & Yawongsa, P. (2022). Digital literacy of pre-service teachers in the period time of COVID-19 pandemic. Journal of Educational Issues, 8(2), 347–358. https://doi.org/10.5296/jei.v8i2.20135

Robinson, L. E., Valido, A., Drescher, A., Woolweaver, A. B., Espelage, D. L., LoMurray, S., Long, A. C. J., Wright, A. A., & Dailey, M. M. (2022). Teachers, stress, and the COVID-19 pandemic: A qualitative analysis. School Mental Health, 15, 78–89. https://doi.org/10.1007/s12310-022-09533-2

Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning & Teaching, 6(1), 31–40. https://doi.org/10.37074/jalt.2023.6.1.17

Vanassche, E., & Kelchtermans, G. (2015). The state of the art in self-study of teacher education practices: A systematic literature review. Journal of Curriculum Studies, 47(4), 508–528. https://doi.org/10.1080/00220272.2014.995712

Vaughan, N., & Lee Wah, J. (2020). The Community of Inquiry Framework: Future practical directions—Shared metacognition. International Journal of E-Learning & Distance Education Revue Internationale Du E-Learning Et La Formation à Distance, 35(1). https://www.ijede.ca/index.php/jde/article/view/1154

Zhang, K., & Aslan, A. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, Article 100025. https://doi.org/10.1016/j.caeai.2021.100025

Zhao, L., Wu, X., & Luo, H. (2022). Developing AI literacy for primary and middle school teachers in China: Based on a structural equation modeling analysis. Sustainability, 14(21), Article 14549. https://doi.org/10.3390/su142114549

Publié-e

2024-11-01