Conception d'une pratique adaptative pour faciliter l'apprentissage autorégulé
DOI :
https://doi.org/10.21432/cjlt28768Mots-clés :
Apprentissage autorégulé, Évaluation basée sur la confiance, pratique adaptative, rouet, séquence de questions, traçage des connaissancesRésumé
L’enseignement supérieur en ligne offre une flexibilité exceptionnelle dans l’apprentissage, mais il exige des compétences élevées en termes d’apprentissage autorégulé. Le manque de compétences d’apprentissage autorégulé chez de nombreuses personnes étudiantes met en évidence la nécessité du soutien. Cette étude présente un système de pratique adaptative basé sur la confiance en tant que solution intelligente d’évaluation et de tutorat pour améliorer l’apprentissage autorégulée dans les disciplines STIM. Contrairement aux systèmes de tutorat intelligents conventionnels qui dépendent entièrement du contrôle de la machine, la pratique adaptative basée sur la confiance intègre la confiance de la personne apprenante et les options de contrôle dans le mécanisme adaptatif basé sur l’intelligence artificielle (IA) pour améliorer l’autonomie d’apprentissage et l’efficacité du modèle, établissant ainsi une approche de contrôle partagé entre l’IA et la personne apprenante. Basés sur le concept de zone de développement proximal de Vygotsky (ZPD), un cadre et un modèle innovant de traçage des connaissances appelé ZPD-KT ont été conçus et mis en œuvre dans le système de pratique adaptative basé sur la confiance. Pour évaluer l’efficacité du modèle ZPD-KT, une simulation de pratique adaptative basée sur la confiance a été effectuée. Les résultats ont démontré que le modèle ZPD-KT a considérablement amélioré la précision de la traçabilité des connaissances par rapport au modèle traditionnel de traçage des connaissances bayésiennes. De plus, les entrevues avec des experts dans le domaine ont souligné le potentiel du système de pratique adaptative pour faciliter l’apprentissage autorégulé et l’interprétabilité du modèle ZPD-KT. Cette étude a également mis en lumière une nouvelle façon de tenir les humains informés de la mise en œuvre de l’apprentissage adaptatif.
Références
Beck, J. E., & Gong, Y. (2013). Wheel-spinning: Students who fail to master a skill. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Artificial intelligence in education. AIED2013 (pp. 431–440). Springer. https://doi.org/10.1007/978-3-642-39112-5_44
Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and illusions. Annual Review of Psychology, 64, 417–444. https://doi.org/10.1146/annurev-psych-113011-143823
Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies and academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27, 1–13. https://doi.org/10.1016/j.iheduc.2015.04.007
Broadbent, J. (2017). Comparing online and blended learners’ self-regulated learning strategies and academic performance. The Internet and Higher Education, 33, 24–32. https://doi.org/10.1016/j.iheduc.2017.01.004
Brusilovsky, P. (2007). Adaptive navigation support. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The adaptive web (pp. 263–290). Springer. https://doi.org/10.1007/978-3-540-72079-9_8
Brusilovsky, P. (2024). AI in education, learner control, and human-AI collaboration. International Journal of Artificial Intelligence in Education, 34, 122–135. https://doi.org/10.1007/s40593-023-00356-z
Clement, B., Roy, D., Oudeyer, P.-Y., & Lopes, M. (2015). Multi-armed bandits for intelligent tutoring systems. Journal of Educational Data Mining, 7(2), 20–48. https://doi.org/10.48550/arXiv.1310.3174
Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 4, 253–278. https://doi.org/10.1007/BF01099821
Deci, E. L., Vallerand, R. J., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and education: The self-determination perspective. Educational Psychologist, 26(3-4), 325–346. https://doi.org/10.1080/00461520.1991.9653137
Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Springer-Verlag. https://doi.org/10.1007/978-3-642-58625-5
Doroudi, S., Aleven, V., & Brunskill, E. (2019). Where’s the reward? International Journal of Artificial Intelligence in Education, 29, 568–620. https://doi.org/10.1007/s40593-019-00187-x
Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology. Annals of Neurosciences, 20(4), 155–156. https://www.doi.org/10.5214/ans.0972.7531.200408
Ekstrand, B. (2015). What it takes to keep children in school: A research review. Educational Review, 67(4), 459–482. https://doi.org/10.1080/00131911.2015.1008406
Gardner-Medwin, T., & Curtin, N. (2007, May 29–31). Certainty-based marking (CBM) for reflective learning and proper knowledge assessment. In REAP International Online Conference on Assessment Design for Learner Responsibility (pp. 1–7). REAP. https://www.ucl.ac.uk/lapt/REAP_cbm.pdf
Holstein, K., Aleven, V., & Rummel, N. (2020). A conceptual framework for human–AI hybrid adaptivity in education. In I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán (Eds.), Artificial intelligence in education. AIED 2020 (pp. 240–254). Springer. https://doi.org/10.1007/978-3-030-52237-7_20
Hsu, H. C. K., Wang, C. V., & Levesque-Bristol, C. (2019). Re-examining the impact of self-determination theory on learning outcomes in the online learning environment. Education and Information Technologies, 24, 2159–2174. https://doi.org/10.1007/s10639-019-09863-w
Jansen, R. S., van Leeuwen, A., Janssen, J., & Kester, L. (2019). Supporting learners’ self-regulated learning in Massive Open Online Courses. Computers & Education, 146, 103771. https://doi.org/10.1016/j.compedu.2019.103771
Lehmann, T., Hähnlein, I., & Ifenthaler, D. (2014). Cognitive, metacognitive and motivational perspectives on preflection in self-regulated online learning. Computers in Human Behavior, 32, 313–323. https://doi.org/10.1016/j.chb.2013.07.051
Luo, Y., Lin, J., & Yang, Y. (2021). Students’ motivation and continued intention with online self-regulated learning: A self-determination theory perspective. Zeitschrift für Erziehungswissenschaft, 24, 1379–1399. https://doi.org/10.1007/s11618-021-01042-3
Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2011). Recommender systems in technology-enhanced learning. In F. Ricci, L. Rokach, B. Shapira, & P. Kantor (Eds.), Recommender systems handbook (pp. 387–415). Springer. https://doi.org/10.1007/978-0-387-85820-3_12
Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J., & Fernández-Leal, A. (2023). Human-in-the-loop machine learning: A state of the art. Artificial Intelligence Review, 56(4), 3005–3054. https://doi.org/10.1007/s10462-022-10246-w
Nkambou, R., Bourdeau, J., & Mizoguchi, R. (Eds.). (2010). Advances in intelligent tutoring systems. Springer. https://doi.org/10.1007/978-3-642-14363-2
Novacek, P. (2013). Confidence-based assessments within an adult learning environment. In G. Demetrios, J. Sampson, M. Spector, D. Ifenthaler, & P. Isaías (Eds.), IADIS International Conference on Cognition and Exploratory Learning in Digital Age (CELDA 2013) (pp. 403–406). International Association for Development of the Information Society. https://eric.ed.gov/?id=ED562245
Nuryadin, A., Lidinillah, D. A. M., Prehanto, A., Maesaroh, S. S., Putri, I. R., & Desmawati, S. A. (2024). Self-regulated learning in STEM education: A bibliometric mapping analysis of research using Scopus database. International Journal of Education in Mathematics, Science and Technology, 12(4), 919–941. https://doi.org/10.46328/ijemst.4015
Papoušek, J., & Pelánek, R. (2017). Should we give learners control over item difficulty? In M. Tkalcic, D. Thakker, P. Germanakos, K. Yacef, C. Paris, & O. Santos (Eds.), UMAP ’17: Adjunct publication of the 25th Conference on User Modeling, Adaptation and Personalization (pp. 299–303). ACM. https://doi.org/10.1145/3099023.3099080
Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and beyond: An overview of learner modeling techniques. User Modeling and User-Adapted Interaction, 27(3), 313–350. https://doi.org/10.1007/s11257-017-9193-2
Preheim, M., Dorfmeister, J., & Snow, E. (2023). Assessing confidence and certainty of students in an undergraduate linear algebra course. Journal for STEM Education Research, 6, 159–180. https://doi.org/10.1007/s41979-022-00082-6
Rahdari, B., Brusilovsky, P., He, D., Thaker, K. M., Luo, Z., & Lee, Y. J. (2022). HELPeR: An interactive recommender system for ovarian cancer patients and caregivers. In J. Golbeck, F. M. Harper, V. Murdock, M. Ekstrand, B. Shapira, J. Basilico, K. Lundgaard, & E. Oldridge (Eds.), RecSys ’22: Proceedings of the 16th ACM Conference on Recommender Systems (pp. 644–647). https://doi.org/10.1145/3523227.3551471
Remesal, A., Corral, M. J., García-Mínguez, P., Domínguez, J., SanMiguel, I., Macsotay, T., & Suárez, E. (2023). Certainty-based self-assessment: A chance for enhanced learning engagement in higher education. An experience at the University of Barcelona. In D. Guralnick, M. E. Auer, & A. Poce (Eds.), Creative approaches to technology-enhanced learning for the workplace and higher education. TLIC 2023 (pp. 689–700). Springer. https://doi.org/10.1007/978-3-031-41637-8_56
Schunk, D. H., & DiBenedetto, M. K. (2020). Motivation and social cognitive theory. Contemporary Educational Psychology, 60, Article 101832. https://doi.org/10.1016/j.cedpsych.2019.101832
Smrkolj, Š., Bančov, E., & Smrkolj, V. (2022). The reliability and medical students’ appreciation of certainty-based marking. International Journal of Environmental Research and Public Health, 19(3), Article 1706. https://doi.org/10.3390/ijerph19031706
Sorgenfrei, C., & Smolnik, S. (2016). The effectiveness of e-learning systems: A review of the empirical literature on learner control. Decision Sciences Journal of Innovative Education, 14(2), 154–184. https://doi.org/10.1111/dsji.12095
Vainas, O., Bar-Ilan, O., Ben-David, Y., Gilad-Bachrach, R., Lukin, G., Ronen, M., & Sitton, D. (2019). E-Gotsky: Sequencing content using the zone of proximal development. ArXiv. https://doi.org/10.48550/arXiv.1904.12268
Viberg, O., Khalil, M., & Baars, M. (2020). Self-regulated learning and learning analytics in online learning environments: A review of empirical research. In C. Rensing & H. Drachsler (Chairs), LAK ’20: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (pp. 524–533). ACM. https://doi.org/10.1145/3375462.3375483
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press.
Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for Web-based instruction. International Journal of Artificial Intelligence in Education, 12, 351–384. https://telearn.hal.science/hal-00197328v1
Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben, G. J., & Paas, F. (2019). Supporting self-regulated learning in online learning environments and MOOCs: A systematic review. International Journal of Human–Computer Interaction, 35(4-5), 356–373. https://doi.org/10.1080/10447318.2018.1543084
Yan, H., Lin, F., & Kinshuk. (2021). Including learning analytics in the loop of self-paced online course learning design. International Journal of Artificial Intelligence in Education, 31, 878–895. https://doi.org/10.1007/s40593-020-00225-z
Yan, H., Lin, F., & Kinshuk. (2022). Removing learning barriers in self-paced online STEM education. Canadian Journal of Learning and Technology, 48(4), 1–18. https://doi.org/10.21432/cjlt28264
Zimmerman, B. J. (2020). Attaining self-regulation: A social cognitive perspective. In Handbook of Self-Regulation (3rd ed., pp. 13–39). Elsevier.
Zohaib, M. (2018). Dynamic difficulty adjustment (DDA) in computer games: A review. Advances in Human‐Computer Interaction, 2018, Article 5681652. https://doi.org/10.1155/2018/5681652
Téléchargements
Publié-e
Numéro
Rubrique
Licence
© Hongxin Yan, Fuhua Lin, Kinshuk 2025

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.
Droits d’auteur
Les auteurs conservent le droit d'auteur et accordent le droit de la première publication de la revue avec le travail simultanément sous une licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International (CC-BY-NC 4.0) qui permet aux autres de partager le travail avec une reconnaissance de la paternité de l'œuvre et la publication initiale dans ce journal.