La prise de décision fondée sur les données par les enseignants dans les écoles primaires et secondaires : Examen de la portée
DOI :
https://doi.org/10.21432/cjlt28781Mots-clés :
prise de décision fondée sur les données probantes (PDDP), Éducation primaire et secondaire, Pratiques enseignantes, Résultats des élèvesRésumé
Malgré l'adoption généralisée des politiques de prise de décision fondée sur les données probantes (PDDP) dans les écoles à travers le monde, peu d’information est disponible au sujet de l’utilisation de la PDDP par les enseignants œuvrant aux paliers primaire et secondaire, ainsi que sur l'impact de la formation en PDDP sur le comportement des enseignants et les résultats scolaires. Cette recension exploratoire vise à fournir un aperçu des écrits actuels sur les usages de la PDDP par les enseignants à l'échelle mondiale et à identifier les lacunes dans le domaine. Les résultats mettent en évidence les points suivants : (a) les études réalisées jusqu’à présent peuvent être groupées de manière géographique et temporelle, et ont surtout été réalisées aux États-Unis et aux Pays-Bas; de plus la majorité des études ont été publiées en 2016-2017 et 2020-2022 ; (b) il existe des lacunes importantes dans les écrits actuels, notamment par rapport au contexte des écoles en ligne et secondaires - les études actuelles reflètent davantage un intérêt pour les écoles élémentaires et les contextes d’études en présentiel ; et (c) les études recensées suggèrent que, bien que les interventions relatives à la PDDP se soient révélées utiles pour modifier les pratiques des enseignants et les résultats scolaires, les enseignants ont besoin d’un soutien plus durable pour améliorer la mise en œuvre de la PDDP. Enfin, l'article fournit des recommandations pour la recherche sur la PDDP, en s'appuyant sur les conclusions des interventions précédentes.
Références
Abdusyakur, I., & Poortman, C. L. (2019). Study on data use in Indonesian primary schools. Journal of Professional Capital and Community, 4(3), 198–215. https://doi.org/10.1108/JPCC-11-2018-0029
Admiraal, W., Vermeulen, J., & Bulterman-Bos, J. (2020). Teaching with learning analytics: How to connect computer-based assessment data with classroom instruction? Technology, Pedagogy and Education, 29(5), 577–591. https://doi.org/10.1080/1475939X.2020.1825992
Andersen, I. G. (2020). What went wrong? Examining teachers’ data use and instructional decision making through a bottom-up data intervention in Denmark. International Journal of Educational Research, 102, 101585. https://doi.org/10.1016/j.ijer.2020.101585
Behrens, J., Piety, P., DiCerbo, K., & Mislevy, R. (2018). Inferential foundations for learning analytics in the digital ocean. In D. Niemi, R. D. Pea, B. Saxberg, & R. E. Clark (Eds.), Learning analytics in education (pp. 1–48). Information Age Publishing Inc.
Campos, F. C., Ahn, J., DiGiacomo, D. K., Nguyen, H., & Hays, M. (2021). Making sense of sensemaking: Understanding how K-12 teachers and coaches react to visual analytics. Journal of Learning Analytics, 8(3), 60–80.
Carlson, D., Borman, G. D., & Robinson, M. (2011). A multistate district-level cluster randomized trial of the impact of data-driven reform on reading and mathematics achievement. Educational Evaluation and Policy Analysis, 33(3), 378–398. https://doi.org/10.3102/0162373711412765
Cheng, L. (1999). Changing assessment: Washback on teacher perspectives and actions. Teaching and Teacher Education, 15(3), 253–271. https://doi.org/10.1016/S0742-051X(98)00046-8
Cheng, L., & Curtis, A. (2004). Washback or backwash: A review of the impact of testing on teaching and learning. In L. Cheng, Y. Watanabe, & A. Curtis (Eds.), Washback in language testing: Research contexts and methods (pp. 3–17). Lawrence Erlbaum.
Christman, J. B., Ebby, C. B., & Edmunds, K. A. (2016). Data use practices for improved mathematics teaching and learning: The importance of productive dissonance and recurring feedback cycles. Teachers College Record, 118(11), 1–32. https://doi.org/10.1177/016146811611801101
Copp, D. T. (2017). Policy incentives in Canadian large-scale assessment: How policy levers influence teacher decisions about instructional change. Education Policy Analysis Archives, 25, 115. https://doi.org/10.14507/epaa.25.3299
Curry, K. A., Mwavita, M., Holter, A., & Harris, E. (2016). Getting assessment right at the classroom level: Using formative assessment for decision making. Educational Assessment, Evaluation and Accountability, 28, 89–104. https://doi.org/10.1007/s11092-015-9226-5
Datnow, A., & Hubbard, L. (2015). Teachers’ use of assessment data to inform instruction: Lessons from the past and prospects for the future. Teachers College Record, 117(4), 1–26. https://doi.org/10.1177/016146811511700408
Datnow, A., Choi, B., Park, V., & John, E. S. (2018). Teacher talk about student ability and achievement in the era of data-driven decision making. Teachers College Record, 120(4), 1–34. https://doi.org/10.1177/016146811812000408
Datnow, A., Lockton, M., & Weddle, H. (2021). Capacity building to bridge data use and instructional improvement through evidence on student thinking. Studies in Educational Evaluation, 69, 100869. https://doi.org/10.1016/j.stueduc.2020.100869
De Simone, J. J. (2020). The roles of collaborative professional development, self-efficacy, and positive affect in encouraging educator data use to aid student learning. Teacher Development, 24(4), 443–465. https://doi.org/10.1080/13664530.2020.1780302
Dunn, K. E., Airola, D. T., Lo, W. J., & Garrison, M. (2013). What teachers think about what they can do with data: Development and validation of the data driven decision-making efficacy and anxiety inventory. Contemporary Educational Psychology, 38(1), 87–98. https://doi.org/10.1016/j.cedpsych.2012.11.002
Ebbeler, J., Poortman, C. L., Schildkamp, K., & Pieters, J. M. (2016). Effects of a data use intervention on educators’ use of knowledge and skills. Studies in Educational Evaluation, 48, 19–31. https://doi.org/10.1016/j.stueduc.2015.11.002
Faber, J., Glas, C., & Visscher, A. J. (2018). Differentiated instruction in a data-based decision-making context. School Effectiveness and School Improvement, 29(1), 43–63. https://doi.org/10.1080/09243453.2017.1366342
Farley-Ripple, E. N., Jennings, A. S., & Buttram, J. (2019). Toward a framework for classifying teachers’ use of assessment data. AERA Open, 5(4), 2332858419883571. https://doi.org/10.1177/2332858419883571
Farrell, C. C., & Marsh, J. A. (2016a). Metrics matter: How properties and perceptions of data shape teachers’ instructional responses. Educational Administration Quarterly, 52(3), 423–462. https://doi.org/10.1177/0013161X16638429
Farrell, C. C., & Marsh, J. A. (2016b). Contributing conditions: A qualitative comparative analysis of teachers’ instructional responses to data. Teaching and Teacher Education, 60, 398–412. https://doi.org/10.1016/j.tate.2016.07.010
Filderman, M. J., Austin, C. R., & Toste, J. R. (2019). Data-based decision making for struggling readers in the secondary grades. Intervention in School and Clinic, 55(1), 3–12. https://doi.org/10.1177/1053451219832991
Gelderblom, G., Schildkamp, K., Pieters, J., & Ehren, M. (2016). Data-based decision making for instructional improvement in primary education. International Journal of Educational Research, 80, 1–14. https://doi.org/10.1016/j.ijer.2016.07.004
Hebbecker, K., Förster, N., Forthmann, B., & Souvignier, E. (2022). Data-based decision-making in schools: Examining the process and effects of teacher support. Journal of Educational Psychology, 114(7), 1695. https://psycnet.apa.org/doi/10.1037/edu0000530
Heinrich, C., & Good, A. (2018). Research-informed practice improvements: Exploring linkages between school district use of research evidence and educational outcomes over time. School Effectiveness and School Improvement, 29(3), 418–445. https://doi.org/10.1080/09243453.2018.1445116
Ho, J. E. (2022). What counts? The critical role of qualitative data in teachers’ decision making. Evaluation and Program Planning, 91, 102046. https://doi.org/10.1016/j.evalprogplan.2021.102046
Hoover, N. R., & Abrams, L. M. (2013). Teachers’ instructional use of summative student assessment data. Applied Measurement in Education, 26(3), 219–231. https://doi.org/10.1080/08957347.2013.793187
Kempf, A. (2015). The school as factory farm: All testing all the time. In The pedagogy of standardized testing (pp. 13–28). Palgrave Macmillan US. https://doi.org/10.1057/9781137486653_2
Keuning, T., Geel, M. V., Visscher, A., Fox, J.-P., & Moolenaar, N. M. (2016). The transformation of schools’ social networks during a data-based decision making reform. Teachers College Record, 118(9), 1–33. https://doi.org/10.1177/016146811611800908
Lai, M. K., & McNaughton, S. (2016). The impact of data use professional development on student achievement. Teaching and Teacher Education, 60, 434–443. https://doi.org/10.1016/j.tate.2016.07.005
Lai, M. K., Wilson, A., McNaughton, S., & Hsiao, S. (2014). Improving achievement in secondary schools: Impact of a literacy project on reading comprehension and secondary school qualifications. Reading Research Quarterly, 49(3), 305–334. https://doi.org/10.1002/rrq.73
Maier, U. (2010). Accountability policies and teachers’ acceptance and usage of school performance feedback – A comparative study. School Effectiveness and School Improvement, 21(2), 145–165. https://doi.org/10.1080/09243450903354913
Marsh, J. A. (2012). Interventions promoting educators’ use of data: Research insights and gaps. Teachers College Record, 114(11), 1–48. https://doi.org/10.1177/016146811211401106
Marsh, J. A., Bertrand, M., & Huguet, A. (2015). Using data to alter instructional practice: The mediating role of coaches and professional learning communities. Teachers College Record, 117(4), 1–40. https://doi.org/10.1177/016146811511700411
Marsh, J. A., Pane, J. F., & Hamilton, L. S. (2006, Nov 7). Making sense of data-driven decision making in education [Occasional Paper]. RAND Corporation.
Michaud, R. (2016). The Nature of Teacher Learning in Collaborative Data Teams. Qualitative Report, 21(3), 529-545. https://doi.org/10.46743/2160-3715/2016.231.
Park, V., & Datnow, A. (2017). Ability grouping and differentiated instruction in an era of data-driven decision making. American Journal of Education, 123(2), 281–306. https://doi.org/10.1086/689930
Peters, M. T., Förster, N., Hebbecker, K., Forthmann, B., & Souvignier, E. (2021). Effects of data-based decision-making on low-performing readers in general education classrooms: Cumulative evidence from six intervention studies. Journal of Learning Disabilities, 54(5), 334–348. https://doi.org/10.1177/00222194211011580
Rangel, V. S., Bell, E. R., & Monroy, C. (2017). A descriptive analysis of instructional coaches’ data use in science. School Effectiveness and School Improvement, 28(2), 217–241. https://doi.org/10.1080/09243453.2016.1255232
Reed, D. K. (2015). Middle level teachers’ perceptions of interim reading assessments: An exploratory study of data-based decision making. RMLE Online: Research in Middle Level Education, 38(6), 1–13. https://doi.org/10.1080/19404476.2015.11462119
Regan, K., Evmenova, A. S., Mergen, R. L., Verbiest, C., Hutchison, A., Murnan, R., Field, S., & Gafurov, B. (2023). The feasibility of using virtual professional development to support teachers in making data‐based decisions to improve students’ writing. Learning Disabilities Research & Practice, 38(1), 40–56. https://doi.org/10.1111/ldrp.12301
Rodríguez‐Martínez, J. A., González‐Calero, J. A., del Olmo‐Muñoz, J., Arnau, D., & Tirado‐Olivares, S. (2023). Building personalised homework from a learning analytics based formative assessment: Effect on fifth‐grade students’ understanding of fractions. British Journal of Educational Technology, 54(1), 76–97. https://doi.org/10.1111/bjet.13292
Schifter, C., Natarajan, U., Ketelhut, D. J., & Kirchgessner, A. (2014). Data-driven decision-making: Facilitating teacher use of student data to inform classroom instruction. Contemporary Issues in Technology and Teacher Education, 14(4), 419–432.
Schildkamp, K., & Ehren, M. (2013). From “intuition” to “data”-based decision making in Dutch secondary schools? In K. Schildkamp, M. K. Lai, & L. Earl (Eds.), Data-based decision making in Education (pp. 49–67). Springer Netherlands. https://doi.org/10.1007/978-94-007-4816-3_4
Schildkamp, K., Poortman, C., & Handelzalts, A. (2016). Data teams for school improvement. School Effectiveness and School Improvement, 27(2), 228–254. https://doi.org/10.1080/09243453.2015.1056192
Schildkamp, K., Poortman, C., Luyten, H., & Ebbeler, J. (2017). Factors promoting and hindering data-based decision making in schools. School Effectiveness and School Improvement, 28(2), 242–258. https://doi.org/10.1080/09243453.2016.1256901
Shirley, D. (2017). The new imperatives of educational change: Achievement with integrity. Routledge. https://doi.org/10.4324/9781315682907
Staman, L., Timmermans, A. C., & Visscher, A. J. (2017). Effects of a data-based decision making intervention on student achievement. Studies in Educational Evaluation, 55, 58–67. https://doi.org/10.1016/j.stueduc.2017.07.002
Staman, L., Visscher, A. J., & Luyten, H. (2014). The effects of professional development on the attitudes, knowledge and skills for data-driven decision making. Studies in Educational Evaluation, 42, 79–90. https://doi.org/10.1016/j.stueduc.2013.11.002
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–485. https://doi.org/10.7326/M18-0850
Tsai, Y., Poquet, O., Gašević, D., Dawson, S., & Pardo, A. (2019). Complexity leadership in learning analytics: Drivers, challenges and opportunities. British Journal of Educational Technology, 50(6), 2839–2854. https://doi.org/10.1111/bjet.12846
Truckenmiller, A. J., Cho, E., & Troia, G. A. (2022). Expanding assessment to instructionally relevant writing components in middle school. Journal of School Psychology, 94, 28–48. https://doi.org/10.1016/j.jsp.2022.07.002
van den Bosch, R. M., Espin, C. A., Chung, S., & Saab, N. (2017). Data‐based decision‐making: Teachers’ comprehension of curriculum‐based measurement progress‐monitoring graphs. Learning Disabilities Research & Practice, 32(1), 46–60. https://doi.org/10.1111/ldrp.12122
van Geel, M., Keuning, T., Visscher, A. J., & Fox, J.-P. (2016). Assessing the Effects of a School-Wide Data-Based Decision-Making Intervention on Student Achievement Growth in Primary Schools. American Educational Research Journal, 53(2), 360–394. https://doi.org/10.3102/0002831216637346
van der Scheer, E. A., & Visscher, A. J. (2016). Effects of an intensive data-based decision making intervention on teacher efficacy. Teaching and Teacher Education, 60, 34–43. https://doi.org/10.1016/j.tate.2016.07.025
van der Scheer, E. A., Glas, C. A., & Visscher, A. J. (2017). Changes in teachers’ instructional skills during an intensive data-based decision making intervention. Teaching and Teacher Education, 65, 171–182. https://doi.org/10.1016/j.tate.2017.02.018
Ylimaki, B., & Brunderman, L., (2019). School development in culturally diverse U.S. schools: Balancing evidence-based policies and education values. Education Sciences, 9(84), 1–15. https://doi.org/10.3390/educsci9020084
Téléchargements
Publié-e
Numéro
Rubrique
Licence
© Areej Tayem, Isabelle Bourgeois 2025

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.
Droits d’auteur
Les auteurs conservent le droit d'auteur et accordent le droit de la première publication de la revue avec le travail simultanément sous une licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International (CC-BY-NC 4.0) qui permet aux autres de partager le travail avec une reconnaissance de la paternité de l'œuvre et la publication initiale dans ce journal.