Learning with Multiple Representations: Infographics as Cognitive Tools for Authentic Learning in Science Literacy | Apprendre avec des représentations multiples: l'infographie de presse comme outil cognitif pour l'apprentissage authentique en science

Authors

  • Engida Gebre Simon Fraser University

DOI:

https://doi.org/10.21432/cjlt27572

Keywords:

infographics, learning with representations, cognitive tools, multiple representations, science literacy

Abstract

This paper presents a descriptive case study where infographics—visual representation of data and ideas—have been used as cognitive tools to facilitate learning with multiple representations in the context of secondary school students’ science news reporting. Despite the complementary nature of the two research foci, studies on cognitive tools and multiple representations have evolved independently. This is because research on cognitive tools has narrowly focused on technological artifacts and their impact on learning outcomes with less attention to learner agency and activity structures. This has created challenges of sustainably applying cognitive tools in classroom teaching and learning. Using data from a design-based research project where secondary school students created authentic infographic-based science news reports, this study demonstrates how infographics can serve as process-oriented cognitive tools for learning and instruction of science literacy in classroom contexts. Results have implications for the study and design of learning environments involving representations.

Cet article présente une étude de cas où l'infographie de presse – offrant une représentation visuelle de données et d’idées – est utilisée comme outil cognitif pour faciliter l'apprentissage au moyen de représentations multiples dans le contexte de production de rapports scientifiques par des élèves du secondaire. Malgré la complémentarité des deux axes de recherche, les travaux sur les outils cognitifs et sur les représentations multiples ont évolué séparément. En effet, la recherche sur les outils cognitifs s'est strictement concentrée sur les artefacts technologiques et leur impact sur les résultats d'apprentissage mais a accordé moins d'attention à l’action  des apprenants et aux structures des activités. Il en résulte des défis pour l’application durable d’outils cognitifs dans l'enseignement et l'apprentissage en classe. À partir de données issues d'un projet de recherche orientée par la conception (design-based research)  dans lequel les élèves du secondaire ont produit des rapports scientifiques authentiques intégrant des infographies de presse, cette étude montre comment l’infographie de presse peut servir 

References

Amiel, T., & Reeves, T. C. (2008). Design-based research and educational technology: Rethinking technology and the research agenda. Educational Technology & Society, 11 (4), 29-40. Retrieved from https://www.learntechlib.org/p/75072/

Bain, J. D., McNaught, C., Mills, C., & Lueckenhausen, G. (1998). Describing computer-facilitated learning environments in higher education. Learning Environments, 1, 163–180. doi:10.1023/A:1009905832421

Beach, K. (1999). Chapter 4: Consequential transitions: A sociocultural expedition beyond transfer in education. Review of Research in Education, 24(1), 101-139. doi:10.3102/0091732X024001101

Bera, S., & Liu, M. (2006). Cognitive tools, individual differences, and group processing as mediating factors in a hypermedia environment. Computers in Human Behavior, 22(2), 295-319. doi:10.1016/j.chb.2004.05.001

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26(3-4), 369-398. doi:10.1080/00461520.1991.9653139

Bowen, G. M., & Roth, W.-M. (2002). Why students may not learn to interpret scientific inscriptions. Research in Science Education, 32(3), 303-327.

Cairo, A. (2013). The functional art: An introduction to information graphics and visualization. Berkeley, CA: New Riders.

Cross, N. (2006). Designerly ways of knowing. London, England: Springer.

Danielson, J. A., Mills, E. M., Vermeer, P. J., Preast, V. A., Young, K. M., Christopher, M. M., George, J. W., Wood, R. D., & Bender, H. S. (2007). Characteristics of a cognitive tool that helps students learn diagnostic problem solving. Educational Technology Research and Development, 55(5), 499-520. doi:10.1007/s11423-006-9003-8

Demirbag, M., & Gunel, M. (2014). Integrating argument-based science inquiry with modal representations: Impact on science achievement, argumentation, and writing skills. Educational Sciences: Theory & Practice, 14(1), 386-391. doi:10.12738/estp.2014.1.1632

diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293-331. doi:10.1207/s1532690xci2203_2

Gebre, E. H. (2017). Assessing student-generated infographics for scaffolding learning with multiple representations. Proceedings of the 2017 Computer Supported Collaborative Learning (CSCL) Conference. Philadelphia, PA. pp. 684-687. doi:10.22318/cscl2017.109

Gebre, E. H., & Polman, J. L. (2016). Developing young adults' representational competence through infographic-based science news reporting. International Journal of Science Education, 38(18), 2667-2687. doi:10.1080/09500693.2016.1258129

Gilbert, J. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and Practice in Science Education (Vol. 3, pp. 3-24): Dordrecht: Springer.

Hegarty, M., Carpenter, P. A., & Just, M. A. (1991). Diagrams in the comprehension of scientific texts. In R. Barr, M. L. Kamil, P. B. Mosenthal, & P. D. Pearson (Eds.), Handbook of reading research (Vol. 2, pp. 641–668). New York, NY: Longman.

Herrington, J. & Parker, J. (2013). Emerging technologies as cognitive tools for authentic learning. British Journal of Educational Technology, 44(4), 607-615. doi:10.1111/bjet.12048

Hung, W. (2008). Enhancing systems-thinking skills with modelling. British Journal of Educational Technology, 39(6), 1099-1120. doi:10.1111/j.1467-8535.2007.00791.x

Iiyoshi, T., Hannafin, M., & Wang, F. (2005). Cognitive tools and student-centered learning: rethinking tools, functions and applications. Educational Media International, 42(4), 281-296. doi:10.1080/09523980500161346

John-Steiner, V. & Mahn, H. (1996). Sociocultural approaches to learning and development: A Vygotskian framework. Educational Psychologist, 31(3/4), 191-206. doi:10.1080/00461520.1996.9653266

Jonassen, D. (2000). Computers as mindtools for schools: Engaging critical thinking (2nd ed.) New Jersey, NJ: Merrill.

Jonassen, D. (2003). Using cognitive tools to represent problems. Journal of Research on Technology in Education, 35(3), 362-381. doi:10.1080/15391523.2003.10782391

Jonassen, D. & Carr, C. S. (2000). Mindtools: Affording multiple knowledge representations for learning. In S. Lajoie (Ed.), Computers as cognitive tools: No more walls, (Vol. 2. 165-196). Mahwah, NJ: Lawrence Erlbaum Associates.

Jonassen, D., & Reeves, T. C. (1996). Learning with technology: Using computers as cognitive tools. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 693-719). New York, NY: Macmillan.

Kim, B. & Reeves, T. (2007). Reframing research on learning with technology: In search of the meaning of cognitive tools. Instructional Science, 35, 207-256. doi:10.1007/s11251-006-9005-2

Kozma, R. (1987). The implications of cognitive psychology for computer-based learning tools. Educational Technology, 27(11), 20-25.

Lajoie, S. (2000). Computers as cognitive tools: No more walls (Vol. 2). Mahwah, NJ: Lawrence Erlbaum Associates.

Latour, B. (1986). Visualization and cognition: Drawing things together. In E. Long & H. Kuklick (Eds.), Knowledge and society studies in the sociology of culture past and present (pp. 1-40). Greenwich, CT: Jai Press.

Lemke, J. (1998). Multimedia literacy demands of the scientific curriculum. Linguistics and Education, 10(3), 247-271. doi:10.1016/S0898-5898(99)00009-1

Lim, C. P., & Barnes, S. (2005). A collective case study of the use of ICT in Economics courses: A sociocultural approach. Journal of the Learning Sciences, 14(4), 489-526. doi:10.1207/s15327809jls1404_2

Liu, M., Horton, L., Corliss, S., Svinicki, M., Bogard, T., Kim, J., & Chang, M. (2009). Students' problem solving as mediated by their cognitive tool use: A study of tool use patterns. Journal of Educational Computing Research, 40(1), 111-139. doi:10.2190/EC.40.1.e

Lo, C. P., Affolter, J. M., & Reeves, T. C. (2002). Building environmental literacy through participation in GIS and multimedia assisted field research. Journal of Geography, 101(1), 10-19. doi:10.1080/00221340208978462

Manlove, S., Lazonder, A., & de Jong, T. (2009). Collaborative versus individual use of regulative software scaffolds during scientific inquiry learning. Interactive Learning Environments, 17(2), 105-117. doi:10.1080/10494820701706437

Matthewman, S. (2011). Technology and social theory. London, England: Palgrave Macmillan

Mayer, R., & Gallini, J. K. (1994). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82(4), 715-726.

Mol, L. (2011). The potential role for infographics in science communication (Unpublished master’s thesis). Vrije Universiteit, Amsterdam.

Namdar, B., & Shen, J. (2016). Intersection of argumentation and the use of multiple representations in the context of socio-scientific issues. International Journal of Science Education, 38(7), 1100-1132. doi:10.1080/09500693.2016.1183265

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

Pea, R. (1985). Beyond amplification: Using the computer to reorganize mental functioning. Educational Psychologist, 20(4), 167-182.

Polman, J. L., & Gebre, E. H.. (2015). Towards critical appraisal of infographics as scientific inscriptions. Journal of Research in Science Education, 52(6), 868–893. doi:10.1002/tea.21225

Rye, J. A., & Rubba, P. A. (2002). Scoring concept maps: An expert map-based scheme weighted for relationships. School Science and Mathematics, 102(1), 33-44. doi:10.1111/j.1949-8594.2002.tb18194.x

Salomon, G., Perkins, D., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. Educational Researcher, 20(3), 2. doi:10.3102/0013189X020003002

Schmid, R., Bernard, R., Borokhovski, E., Tamim, R., Abrami, P., Wade, C., Surkes, M., & Lowerison, G. (2009). Technology’s effect on achievement in higher education: A stage I meta-analysis of classroom applications. Journal of Computing in Higher Education, 21(2), 95-109. doi:10.1007/s12528-009-9021-8

Stahl, G. (2006). Supporting group cognition in an online math community: A cognitive tool for small-group referencing in text chat. Journal of Educational Computing Research, 35(2), 103-122. doi:10.2190/Q435-7611-2561-720P

Stake, R. E. (2006). Multiple case study analysis. New York: Guilford Press.

Sudakov, I., Bellsky, T., Usenyuk, S., & Polyakova, V. V. (2016). Infographics and mathematics: A mechanism for effective learning in the classroom. PRIMIUS, 26(2), 158-167. doi:10.1080/10511970.2015.1072607

Sugrue, B. (2000). Cognitive approaches to web-based instruction. In S. Lajoie (Ed.), Computers as cognitive tools: No more walls (pp. 133-162). Mahwah, NJ: Lawrence Erlbaum Associates.

Thompson, C. (2016, July). The surprising history of the infographic: Early iterations saved soldiers’ lives, debunked myths about slavery and helped Americans settle the frontier. Retrieved on January 24, 2017 from http://www.smithsonianmag.com/history/surprising-history-infographic-180959563/#bZj3BMGqMtwFbhUj.99

VanderMolen, J. & Spivey, C. (2017). Creating infographics to enhance student engagement and communication in health economics. The Journal of Economic Education, 48(3), 198-205. doi:10.1080/00220485.2017.1320605

Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: literature review and synthesis. Educational Psychology Review, 17, 285–325. Retrieved from https://link.springer.com/article/10.1007/s10648-005-8136-3

Verdi, M. P., & Kulhavy, R. W. (2002). Learning with maps and texts: An overview. Educational psychology review, 14(1), 27-46.

Wertsch, J. V. (1998). Mind as action. Oxford: Oxford University Press.

Wu, H. K., & Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of Science Education and Technology, 21(6), 754-767. doi:10.1007/s10956-011-9363-7

Yore, L. D., & Hand, B. (2010). Epilogue: Plotting a research agenda for multiple representations, multiple modality, and multimodal representational competency. Research in Science Education, 40(1), 93-101. doi:10.1007/s11165-009-9160-y

Downloads

Published

2018-05-08

Issue

Section

Articles