La cognification dans l'enseignement, l'apprentissage et la formation
DOI :
https://doi.org/10.21432/cjlt28261Mots-clés :
Cognification , IA dans l'éducation , quatrième révolution industrielle , technologie éducativeRésumé
Au cours de la dernière décennie, les possibilités d'apprentissage en ligne ont augmenté de façon remarquable. Les apprenants du monde entier ont maintenant un accès numérique à un large éventail de formations d'entreprise, de certifications, de programmes universitaires complets et d'autres options d'éducation et de formation. Certaines organisations combinent les méthodes d'enseignement traditionnelles avec les technologies en ligne. L'apprentissage hybride génère d'importants volumes de données concernant à la fois le contenu (qualité et utilisation) et les apprenants (habitudes d'étude et résultats d'apprentissage). En conséquence, la nécessité de traiter correctement des données volumineuses, continues et souvent divergentes a entraîné l'avènement de la cognification. Les techniques de cognification conçoivent des modèles d'analyse de données complexes qui permettent à l'intelligence naturelle de mobiliser l'intelligence artificielle de manière à améliorer l'expérience d'apprentissage. La cognification est l'approche qui consiste à rendre quelque chose de plus en plus intelligent, de manière éthique et régulée. Cet article souligne comment les tendances émergentes en matière de cognification pourraient bouleverser l'enseignement en ligne.
Références
Abbass, H. A. (2019). Social integration of artificial intelligence: Functions, automation allocation logic and human-autonomy trust. Cognitive Computation, 11(2), 159–171. https://doi.org/10.1007/s12559-018-9619-0
Alikaniotis, D., Yannakoudakis, H., & Rei, M. (2016). Automatic text scoring using neural networks. ArXiv Preprint ArXiv:1606.04289.
Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., & Benjamins, R. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
Astle, J. (2018). Do schools really kill creativity? RSA Blog, April 2018. https://www.thersa.org/blog/2018/04/do-schools-kill-creativity
Brokenshire, D., & Kumar, V. (2009). Discovering Causal Models of Self-Regulated Learning. AIED, 257–264. https://doi.org/0.3233/978-1-60750-028-5-257
Dong, F., Zhang, Y., & Yang, J. (2017). Attention-based recurrent convolutional neural network for automatic essay scoring. Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), 153–162.
Gysegom, W., Houthuys, S., Khanna, S., Migliorini, R., Misljencevic, D., & Robertson, M. (2021). 4IR capability building: Opportunities and solutions for lasting impact. McKinsey & Company. https://www.mckinsey.com/capabilities/operations/our-insights/4ir-capability-building-opportunities-and-solutions-for-lasting-impact
Jankowska, M., Conrad, C., Harris, J., & Kešelj, V. (2018). N-gram based approach for automatic prediction of essay rubric marks. In E. Bagheri & J. C. K. Cheung (Eds.), Advances in artificial intelligence (pp. 298–303). Cham: Springer International Publishing.
Kumar, V. S. (1996). Computer-Supported Collaborative Learning: Issues for Research. Proceedings of the 8th Annual Graduate Symposium on Computer Science, University of Saskatchewan, Canada.
Kumar, V. S., & Boulanger, D. (2020a). Automated Essay Scoring and the Deep Learning Black Box: How are rubric scores determined? International Journal of Artificial Intelligence in Education, 31, 538-584. https://doi.org/10.1007/S40593-020-00211-5
Kumar, V. S., & Boulanger, D. (2020b). Explainable Automated Essay Scoring: Deep Learning Really Has Pedagogical Value, Frontiers in Education, 5. https://doi.org/10.3389/feduc.2020.572367
Kumar, V. S., Fraser, S., & Boulanger, D. (2017). Discovering the predictive power of five baseline writing competences. Journal of Writing Analytics, 1(1), 176–226.
Majumder, S., Chakraborty, J., Bai, G. R., Stolee, K. T., & Menzies, T. (2021). Fair enough: Searching for sufficient measures of fairness. ArXiv Preprint ArXiv:2110.13029. https://arxiv.org/abs/2110.13029
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1-35. https://doi.org/10.1145/3457607
Mohkami, M., Noorian, Z., & Vassileva, J. (2015). Dynamic credibility threshold assignment in trust and reputation mechanisms using PID Controller. In N. Baloian, Y. Zorian, P. Taslakian, & S. Shoukouryan (Eds.), Collaboration and technology, 9334 (pp. 148–163). Springer International Publishing. https://doi.org/10.1007/978-3-319-22747-4_12
Penprase, B. E. (2018). The fourth industrial revolution and higher education. In Nancy W. Gleason (Ed.), Higher education in the era of the fourth industrial revolution (pp. 208-229). Palgrave Macmillan. https://doi.org/10.1007/978-981-13-0194-0_9
Scholtz, J., & Bahrami, S. (2003). Human-robot interaction: Development of an evaluation methodology for the bystander role of interaction. SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483), 4, 3212–3217. https://doi.org/10.1109/ICSMC.2003.1244385
Schwab, K. (2016). The fourth industrial revolution (First U.S. edition). Crown Business.
Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control. MIT press.
Shermis, M. D. (2014). State-of-the-art automated essay scoring: Competition, results, and future directions from a United States demonstration. Assessing Writing, 20, 53–76. https://doi.org/10.1016/j.asw.2013.04.001
Verma, S., & Rubin, J. (2018). Fairness definitions explained. Proceedings of the International Workshop on Software Fairness, 1–7. https://doi.org/10.1145/3194770.3194776
Wagner, G., Lukyanenko, R., & Paré, G. (2022). Artificial intelligence and the conduct of literature reviews. Journal of Information Technology, 37(2), 209–226. https://doi.org/10.1177/02683962211048201
Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated engagement in learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Routledge.
Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., & Zhu, J. (2019). Explainable AI: A brief survey on history, research areas, approaches and challenges. In J. Tang, M.-Y. Kan, D. Zhao, S. Li, & H. Zan (Eds.), Natural language processing and Chinese computing, 11839 (pp. 563–574). Springer International Publishing. https://doi.org/10.1007/978-3-030-32236-6_51
Yusuf, B., Walters, L. M., & Sailin, S. N. (2020). Restructuring educational institutions for growth in the fourth industrial revolution (4IR): A systematic review. International Journal of Emerging Technologies in Learning, 15(3), 93–109. https://doi.org/10.3991/ijet.v15i03.11849
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – Where are the educators? International Journal of Educational Technology in Higher Education, 2–27. https://doi.org/10.1186/s41239-019-0171-0
Zupanc, K., & Bosnić, Z. (2017). Automated essay evaluation with semantic analysis. Knowledge-Based Systems, 120, 118–132. https://doi.org/10.1016/j.knosys.2017.01.006
Téléchargements
Publié-e
Numéro
Rubrique
Licence
© Vivekanandan Kumar, Mohamed Ally, Avgoustos Tsinakos, Helmi Norman 2022
Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.
Droits d’auteur
Les auteurs conservent le droit d'auteur et accordent le droit de la première publication de la revue avec le travail simultanément sous une licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International (CC-BY-NC 4.0) qui permet aux autres de partager le travail avec une reconnaissance de la paternité de l'œuvre et la publication initiale dans ce journal.