Intelligence artificielle et formation universitaire : analyse bibliométrique des tendances et perspectives de recherche

Auteurs-es

  • Elassaad Elharbaoui Université de Carthage
  • Jean Gabin Ntebutse Université de Sherbrooke

DOI :

https://doi.org/10.21432/cjlt28788

Mots-clés :

Intelligence artificielle, formation universitaire, apprentissage, analyse bibliométrique, tendances de recherche

Résumé

Cette étude examine les tendances et les développements des publications ainsi que la dynamique de collaboration scientifique entre auteurs, pays, organismes et sources récentes liés à l’utilisation de l’intelligence artificielle (IA) dans la formation et l’apprentissage universitaires. Une analyse bibliométrique de 285 articles publiés depuis 2014 jusqu’au 26 mars 2024, issus de la base de données Web of Science a révélé une forte association entre l’IA et des thèmes tels que l’éducation, la motivation des étudiants, le « feedback » et l’autocontrôle. La Chine et les États-Unis sont les pays les plus influents dans ce domaine de recherche, avec une collaboration croissante d’autres pays, comme le Afrique du Sud, Brésil, Canada, Israël, Pologne, Singapour, Vietnam depuis 2023. Les premières publications remontent à 2022 dans des revues spécialisées comme International Journal of Educational Technology in Higher Education et Educational Technology & Society. Bien que l’analyse présente certaines limites, telles qu’une compréhension réduite des tendances, une couverture partielle des publications et une faible représentativité des données, elle offre des insights précieux pour de futurs projets de collaboration interdisciplinaires et de recherches qualitatives visant à mieux comprendre la dynamique de l’intégration de l’IA dans l’enseignement supérieur.

Bibliographies de l'auteur-e

Elassaad Elharbaoui, Université de Carthage

Elassaad Elharbaoui est enseignant chercheur à l’Institut supérieur des cadres de l’enfance, Université de Carthage, Tunisie. Courriel : elassaad.elharaoui@isce.ucar.tn ORCID : https://orcid.org/0000-0002-1946-3561

Jean Gabin Ntebutse, Université de Sherbrooke

Jean Gabin Ntebutse est professeur titulaire à la Faculté d’éducation, Université de Sherbrooke, Canada. Courriel : jean.gabin.ntebutse@usherbrooke.ca ORCID : https://orcid.org/0009-0000-3809-838X

 

Références

Altinay, Z., Altinay, F., Dagli, G., Shadiev, R., & Othman, A. (2024). Factors Influencing AI Learning Motivation and Personalisation Among Pre-service Teachers in Higher Education. MIER Journal of Educational Studies Trends and Practices, 462–481. https://doi.org/10.52634/mier/2024/v14/i2/2714

Calderón Garrido, D., & Gustems Carnicer, J. (2018). Análisis bibliométrico de la producción científica sobre educación musical en el periodo 2007–2016 en revistas incluidas en JCR. BiD: university texts on librarianship and documentation, 41. https://dx.doi.org/10.1344/BiD2018.41.9

Castellano, M. S., Contreras-McKay, I., Neyem, A., Farfán, E., Inzunza, O., Ottone, N. E., del Sol, M., Alario-Hoyos, C., Alvarado, M. S., & Tubbs, R. S. (2024). Empowering human anatomy education through gamification and artificial intelligence : An innovative approach to knowledge appropriation. Clinical Anatomy, 37(1), 12–24. https://doi.org/10.1002/ca.24074

Castro, R. A. G., Chura-Quispe, G., Molina, J. F. V., Ramos, L. A. E., & Durand, C. A. A. (2024). Bibliometric review on teaching methods with artificial intelligence in education. Online Journal of Communication and Media Technologies, 14(2). https://doi.org/10.30935/ojcmt/14367

Chai, C. S., Lin, P.-Y., Jong, M. S.-Y., Dai, Y., Chiu, T. K. F., & Qin, J. (2021). Perceptions of and Behavioral Intentions towards Learning Artificial Intelligence in Primary School Students. Educational Technology & Society, 24(3), 89–101. https://www.jstor.org/stable/27032858

Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education : Contributors, collaborations, research topics, challenges, and future directions. Educational Technology & Society, 25(1), 28–47. https://www.jstor.org/stable/48647028

Chiu, T. K. F. (2023). The impact of Generative AI (GenAI) on practices, policies and research direction in education : A case of ChatGPT and Midjourney. Interactive Learning Environments 32(10), 6187–6203. https://doi.org/10.1080/10494820.2023.2253861

Chiu, T. K. F., Meng, H., Chai, C.-S., King, I., Wong, S., & Yam, Y. (2022). Creation and Evaluation of a Pretertiary Artificial Intelligence (AI) Curriculum. IEEE Transactions on Education, 65(1), 30–39. https://doi.org/10.1109/TE.2021.3085878

Chiu, T. K. F., Moorhouse, B. L., Chai, C. S., & Ismailov, M. (2023). Teacher support and student motivation to learn with artificial intelligence (AI) based chatbot. Interactive Learning Environments, 32(7), 3240–3256. https://doi.org/10.1080/10494820.2023.2172044

Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education : The state of the field. International Journal of Educational Technology in Higher Education, 20, 22. https://doi.org/10.1186/s41239-023-00392-8

Delen, I., Sen, N., Ozudogru, F., & Biasutti, M. (2024). Understanding the growth of artificial intelligence in educational research through bibliometric analysis. Sustainability, 16(16), 6724. https://doi.org/10.3390/su16166724

Fărcașiu, M. A., Gherheș, V., Șimon, S., Dejica-Cartis, D., Cǎdariu, L., & Kilyeni, A. (2023). Easy-to-read : Evolution and perspectives––A bibliometric analysis of research, 1978–2021. International Journal of Environmental Research and Public Health, 20(4), 3359. https://doi.org/10.3390/ijerph20043359

Farliana, N., & Hardianto, H. (2024). The use of artificial intelligence in higher education : Bibliometric analysis 2014-2023. Asian Journal of Applied Science and Technology, 8(2), 69–80. https://doi.org/10.38177/ajast.2024.8208

Gorgun, G., & Yildirim-Erbasli, S. N. (2024). Algorithmic bias in BERT for response accuracy prediction : A case study for investigating population validity. Journal of Educational Measurement. https://doi.org/10.1111/jedm.12420

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 105–117). Sage Publications, Inc. https://miguelangelmartinez.net/IMG/pdf/1994_Guba_Lincoln_Paradigms_Quali_Research_chapter.pdf

Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Buckingham Shum, S., Santos, O. C., Rodrigo, M. T., Cukurova, M., Bittencourt, I. I., & Koedinger, K. R. (2022). Ethics of AI in education : Towards a community-wide framework. International Journal of Artificial Intelligence in Education, 32, 504–526. https://doi.org/10.1007/s40593-021-00239-1

Hutter, M. (2005). Universal artificial intelligence. Springer Nature. https://doi.org/10.1007/B138233

Hwang, G.-J., & Tu, Y.-F. (2021). Roles and research trends of artificial intelligence in mathematics education : A bibliometric mapping analysis and systematic review. Mathematics, 9(6), 584. https://doi.org/10.3390/math9060584

Ivanov, S. (2023). The dark side of artificial intelligence in higher education. The Service Industries Journal, 43(15–16), 1055–1082. https://doi.org/10.1080/02642069.2023.2258799

Ivanova, M., Grosseck, G., & Holotescu, C. (2024). Unveiling insights : A bibliometric analysis of artificial intelligence in teaching. Informatics, 11(1), 10. https://doi.org/10.3390/informatics11010010

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, 253. https://doi.org/10.1017/S0140525X16001837

Lee, K., & Fanguy, M. (2022). Online exam proctoring technologies : Educational innovation or deterioration? British Journal of Educational Technology, 53(3), 475–490. https://doi.org/10.1111/bjet.13182

Liu, Y., Sullivan, P., & Sinnamon, L. (2024). AI transparency in academic search systems : An initial exploration. Proceedings of the Association for Information Science and Technology, 61(1), 1002–1004. https://doi.org/10.1002/pra2.1167

Marr, B. (2019). 27 incredible examples of AI and machine learning in practice. Forbes.

Monaco, F., Andretta, V., Bellocchio, U., Cerrone, V., Cascella, M., & Piazza, O. (2024). Bibliometric analysis (2000–2024) of research on artificial intelligence in nursing. ANS. Advances in nursing science. https://doi.org/10.1097/ANS.0000000000000542

Montalván, B. K. C., Angos, C. G. P., Fonseca, J. A. C., & Aguaiza, R. V. (2024). The influence of artificial intelligence in higher education based on four thematic axes : A bibliometric study. Sapienza. International Journal of Interdisciplinary Studies, 5(2). https://doi.org/10.51798/sijis.v5i2.764

Moura, A., & Carvalho, A. A. A. (2024). Teachers' perceptions of the use of artificial intelligence in the classroom. Proceedings of the International Conference on Lifelong Education and Leadership for All (ICLEL 2023) (pp. 140-150). Atlantis Press. https://doi.org/10.2991/978-94-6463-380-1_13

Pantazatos, D., Grammatikou, M., & Maglaris, V. (2023). Artificial intelligence in education : Ethics and trust challenges. EDULEARN23 Proceedings (pp. 5951–5957). IATED. https://doi.org/10.21125/edulearn.2023.1556

Riazi, A. M., Ghanbar, H., Marefat, F., & Fazel, I. (2023). Review and analysis of empirical articles published in TESOL Quarterly over its lifespan. Studies in Second Language Learning and Teaching, 13(4), 811–841. https://doi.org/10.14746/ssllt.40217

Roxas, R. E. O., & Recario, R. N. C. (2024). Scientific landscape on opportunities and challenges of large language models and natural language processing. Indonesian Journal of Electrical Engineering and Computer Science, 36(1). https://doi.org/10.11591/ijeecs.v36.i1.pp252-263

Szeliski, R. (2021). Computer vision. Algorithms and applications (2e éd.). Springer.

Tang, K. H. D. (2024). Implications of artificial intelligence for teaching and learning. Acta Pedagogia Asiana, 3(2). https://doi.org/10.53623/apga.v3i2.404

Vemuri, V. K. (2014). The second machine age : Work, progress, and prosperity in a time of brilliant technologies, by Erik Brynjolfsson and Andrew McAfee. Journal of Information Technology Case and Application Research, 16(2). https://doi.org/10.1080/15228053.2014.943094

Williams, R. T. (2024). The ethical implications of using generative chatbots in higher education. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1331607

Yılmaz, A. A., & Tuzlukaya, S. E. (2023). The relation between intellectual capital and digital transformation : A bibliometric analysis. International Journal of Innovation Science, 16(2), 244–264. https://doi.org/10.1108/IJIS-08-2022-0145

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneaur, F. (2019. Systematic review of research on artificial intelligence applications in higher education – where are the educators?. International Journal of Educational Technology in Higher Education, 16(39). https://doi.org/10.1186/s41239-019-0171-0

Téléchargements

Publié-e

2025-07-02

Numéro

Rubrique

Articles