Intelligence artificielle et formation universitaire : analyse bibliométrique des tendances et perspectives de recherche
DOI :
https://doi.org/10.21432/cjlt28788Mots-clés :
Intelligence artificielle, formation universitaire, apprentissage, analyse bibliométrique, tendances de rechercheRésumé
Cette étude examine les tendances et les développements des publications ainsi que la dynamique de collaboration scientifique entre auteurs, pays, organismes et sources récentes liés à l’utilisation de l’intelligence artificielle (IA) dans la formation et l’apprentissage universitaires. Une analyse bibliométrique de 285 articles publiés depuis 2014 jusqu’au 26 mars 2024, issus de la base de données Web of Science a révélé une forte association entre l’IA et des thèmes tels que l’éducation, la motivation des étudiants, le « feedback » et l’autocontrôle. La Chine et les États-Unis sont les pays les plus influents dans ce domaine de recherche, avec une collaboration croissante d’autres pays, comme le Afrique du Sud, Brésil, Canada, Israël, Pologne, Singapour, Vietnam depuis 2023. Les premières publications remontent à 2022 dans des revues spécialisées comme International Journal of Educational Technology in Higher Education et Educational Technology & Society. Bien que l’analyse présente certaines limites, telles qu’une compréhension réduite des tendances, une couverture partielle des publications et une faible représentativité des données, elle offre des insights précieux pour de futurs projets de collaboration interdisciplinaires et de recherches qualitatives visant à mieux comprendre la dynamique de l’intégration de l’IA dans l’enseignement supérieur.
Références
Altinay, Z., Altinay, F., Dagli, G., Shadiev, R., & Othman, A. (2024). Factors Influencing AI Learning Motivation and Personalisation Among Pre-service Teachers in Higher Education. MIER Journal of Educational Studies Trends and Practices, 462–481. https://doi.org/10.52634/mier/2024/v14/i2/2714
Calderón Garrido, D., & Gustems Carnicer, J. (2018). Análisis bibliométrico de la producción científica sobre educación musical en el periodo 2007–2016 en revistas incluidas en JCR. BiD: university texts on librarianship and documentation, 41. https://dx.doi.org/10.1344/BiD2018.41.9
Castellano, M. S., Contreras-McKay, I., Neyem, A., Farfán, E., Inzunza, O., Ottone, N. E., del Sol, M., Alario-Hoyos, C., Alvarado, M. S., & Tubbs, R. S. (2024). Empowering human anatomy education through gamification and artificial intelligence : An innovative approach to knowledge appropriation. Clinical Anatomy, 37(1), 12–24. https://doi.org/10.1002/ca.24074
Castro, R. A. G., Chura-Quispe, G., Molina, J. F. V., Ramos, L. A. E., & Durand, C. A. A. (2024). Bibliometric review on teaching methods with artificial intelligence in education. Online Journal of Communication and Media Technologies, 14(2). https://doi.org/10.30935/ojcmt/14367
Chai, C. S., Lin, P.-Y., Jong, M. S.-Y., Dai, Y., Chiu, T. K. F., & Qin, J. (2021). Perceptions of and Behavioral Intentions towards Learning Artificial Intelligence in Primary School Students. Educational Technology & Society, 24(3), 89–101. https://www.jstor.org/stable/27032858
Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education : Contributors, collaborations, research topics, challenges, and future directions. Educational Technology & Society, 25(1), 28–47. https://www.jstor.org/stable/48647028
Chiu, T. K. F. (2023). The impact of Generative AI (GenAI) on practices, policies and research direction in education : A case of ChatGPT and Midjourney. Interactive Learning Environments 32(10), 6187–6203. https://doi.org/10.1080/10494820.2023.2253861
Chiu, T. K. F., Meng, H., Chai, C.-S., King, I., Wong, S., & Yam, Y. (2022). Creation and Evaluation of a Pretertiary Artificial Intelligence (AI) Curriculum. IEEE Transactions on Education, 65(1), 30–39. https://doi.org/10.1109/TE.2021.3085878
Chiu, T. K. F., Moorhouse, B. L., Chai, C. S., & Ismailov, M. (2023). Teacher support and student motivation to learn with artificial intelligence (AI) based chatbot. Interactive Learning Environments, 32(7), 3240–3256. https://doi.org/10.1080/10494820.2023.2172044
Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education : The state of the field. International Journal of Educational Technology in Higher Education, 20, 22. https://doi.org/10.1186/s41239-023-00392-8
Delen, I., Sen, N., Ozudogru, F., & Biasutti, M. (2024). Understanding the growth of artificial intelligence in educational research through bibliometric analysis. Sustainability, 16(16), 6724. https://doi.org/10.3390/su16166724
Fărcașiu, M. A., Gherheș, V., Șimon, S., Dejica-Cartis, D., Cǎdariu, L., & Kilyeni, A. (2023). Easy-to-read : Evolution and perspectives––A bibliometric analysis of research, 1978–2021. International Journal of Environmental Research and Public Health, 20(4), 3359. https://doi.org/10.3390/ijerph20043359
Farliana, N., & Hardianto, H. (2024). The use of artificial intelligence in higher education : Bibliometric analysis 2014-2023. Asian Journal of Applied Science and Technology, 8(2), 69–80. https://doi.org/10.38177/ajast.2024.8208
Gorgun, G., & Yildirim-Erbasli, S. N. (2024). Algorithmic bias in BERT for response accuracy prediction : A case study for investigating population validity. Journal of Educational Measurement. https://doi.org/10.1111/jedm.12420
Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 105–117). Sage Publications, Inc. https://miguelangelmartinez.net/IMG/pdf/1994_Guba_Lincoln_Paradigms_Quali_Research_chapter.pdf
Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Buckingham Shum, S., Santos, O. C., Rodrigo, M. T., Cukurova, M., Bittencourt, I. I., & Koedinger, K. R. (2022). Ethics of AI in education : Towards a community-wide framework. International Journal of Artificial Intelligence in Education, 32, 504–526. https://doi.org/10.1007/s40593-021-00239-1
Hutter, M. (2005). Universal artificial intelligence. Springer Nature. https://doi.org/10.1007/B138233
Hwang, G.-J., & Tu, Y.-F. (2021). Roles and research trends of artificial intelligence in mathematics education : A bibliometric mapping analysis and systematic review. Mathematics, 9(6), 584. https://doi.org/10.3390/math9060584
Ivanov, S. (2023). The dark side of artificial intelligence in higher education. The Service Industries Journal, 43(15–16), 1055–1082. https://doi.org/10.1080/02642069.2023.2258799
Ivanova, M., Grosseck, G., & Holotescu, C. (2024). Unveiling insights : A bibliometric analysis of artificial intelligence in teaching. Informatics, 11(1), 10. https://doi.org/10.3390/informatics11010010
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, 253. https://doi.org/10.1017/S0140525X16001837
Lee, K., & Fanguy, M. (2022). Online exam proctoring technologies : Educational innovation or deterioration? British Journal of Educational Technology, 53(3), 475–490. https://doi.org/10.1111/bjet.13182
Liu, Y., Sullivan, P., & Sinnamon, L. (2024). AI transparency in academic search systems : An initial exploration. Proceedings of the Association for Information Science and Technology, 61(1), 1002–1004. https://doi.org/10.1002/pra2.1167
Marr, B. (2019). 27 incredible examples of AI and machine learning in practice. Forbes.
Monaco, F., Andretta, V., Bellocchio, U., Cerrone, V., Cascella, M., & Piazza, O. (2024). Bibliometric analysis (2000–2024) of research on artificial intelligence in nursing. ANS. Advances in nursing science. https://doi.org/10.1097/ANS.0000000000000542
Montalván, B. K. C., Angos, C. G. P., Fonseca, J. A. C., & Aguaiza, R. V. (2024). The influence of artificial intelligence in higher education based on four thematic axes : A bibliometric study. Sapienza. International Journal of Interdisciplinary Studies, 5(2). https://doi.org/10.51798/sijis.v5i2.764
Moura, A., & Carvalho, A. A. A. (2024). Teachers' perceptions of the use of artificial intelligence in the classroom. Proceedings of the International Conference on Lifelong Education and Leadership for All (ICLEL 2023) (pp. 140-150). Atlantis Press. https://doi.org/10.2991/978-94-6463-380-1_13
Pantazatos, D., Grammatikou, M., & Maglaris, V. (2023). Artificial intelligence in education : Ethics and trust challenges. EDULEARN23 Proceedings (pp. 5951–5957). IATED. https://doi.org/10.21125/edulearn.2023.1556
Riazi, A. M., Ghanbar, H., Marefat, F., & Fazel, I. (2023). Review and analysis of empirical articles published in TESOL Quarterly over its lifespan. Studies in Second Language Learning and Teaching, 13(4), 811–841. https://doi.org/10.14746/ssllt.40217
Roxas, R. E. O., & Recario, R. N. C. (2024). Scientific landscape on opportunities and challenges of large language models and natural language processing. Indonesian Journal of Electrical Engineering and Computer Science, 36(1). https://doi.org/10.11591/ijeecs.v36.i1.pp252-263
Szeliski, R. (2021). Computer vision. Algorithms and applications (2e éd.). Springer.
Tang, K. H. D. (2024). Implications of artificial intelligence for teaching and learning. Acta Pedagogia Asiana, 3(2). https://doi.org/10.53623/apga.v3i2.404
Vemuri, V. K. (2014). The second machine age : Work, progress, and prosperity in a time of brilliant technologies, by Erik Brynjolfsson and Andrew McAfee. Journal of Information Technology Case and Application Research, 16(2). https://doi.org/10.1080/15228053.2014.943094
Williams, R. T. (2024). The ethical implications of using generative chatbots in higher education. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1331607
Yılmaz, A. A., & Tuzlukaya, S. E. (2023). The relation between intellectual capital and digital transformation : A bibliometric analysis. International Journal of Innovation Science, 16(2), 244–264. https://doi.org/10.1108/IJIS-08-2022-0145
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneaur, F. (2019. Systematic review of research on artificial intelligence applications in higher education – where are the educators?. International Journal of Educational Technology in Higher Education, 16(39). https://doi.org/10.1186/s41239-019-0171-0
Publié-e
Numéro
Rubrique
Licence
© Elassaad Elharbaoui, Jean Gabin Ntebutse 2025

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.
Droits d’auteur
Les auteurs conservent le droit d'auteur et accordent le droit de la première publication de la revue avec le travail simultanément sous une licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International (CC-BY-NC 4.0) qui permet aux autres de partager le travail avec une reconnaissance de la paternité de l'œuvre et la publication initiale dans ce journal.