Confidentialité et Intelligence émotionnelle dans l'apprentissage basé sur la technologie

Auteurs-es

  • Yuliya Frolova KIMEP University

DOI :

https://doi.org/10.21432/cjlt28814

Mots-clés :

adoption technologique, intelligence émotionnelle, Kazakhstan, orientation vers la vie privée, technologies mobiles

Résumé

Cette étude explore l'influence de l'intelligence émotionnelle et de l'orientation vers la vie privée sur les attitudes et les intentions d'apprendre avec les technologies mobiles. Des données ont été recueillies auprès de 272 répondants au Kazakhstan, un pays dont l’économie est en transition. Les résultats révèlent que l'intelligence émotionnelle et l'orientation vers la vie privée affectent positivement les attitudes et les intentions, sauf pour la dimension relative à la protection de la vie privée personnelle. De plus, un modèle intégrant l'intelligence émotionnelle et l'orientation vers la vie privée explique mieux les variations dans les attitudes et les intentions que les modèles les considérant séparément. Cette recherche contribue à la compréhension des construits multidimensionnels de l'apprentissage mobile, de la vie privée et de l'intelligence émotionnelle dans des contextes non occidentaux, offrant des perspectives pertinentes pour l'adoption technologique dans des économies en transition.

Biographie de l'auteur-e

Yuliya Frolova, KIMEP University

Yuliya Frolova is Associate Professor of Management and Associate Dean at KIMEP University in Kazakhstan. With more than 18 years of academic experience, she specializes in leadership, human resources, and ethics. A dedicated educator and international scholar, Yuliya advances global collaboration through impactful teaching and publications in Scopus and Web of Science journals. Email: frolova@kimep.kz

Références

Abu-Shanab, E., & Abu-Shanab, A. (2022). The influence of emotional intelligence on technology adoption and decision-making process. International Journal of Applied Decision Sciences, 15(5), 604–622. https://doi.org/10.1504/IJADS.2022.10041125

Adhikary, A., Diatha, K. S., Borah, S. B., & Sharma, A. (2021). How does the adoption of digital payment technologies influence unorganized retailers’ performance? An investigation in an emerging market. Journal of the Academy of Marketing Science, 49, 882–902. https://doi.org/10.1007/s11747-021-00778-y

Akpan, I. J., Udoh, E. A. P., & Adebisi, B. (2020). Small business awareness and adoption of state-of-the-art technologies in emerging and developing markets, and lessons from the COVID-19 pandemic. Journal of Small Business & Entrepreneurship, 34(2), 123–140. https://doi.org/10.1080/08276331.2020.1820185

Audrin, C., & Audrin, B. (2024). Emotional intelligence in digital interactions: A call for renewed assessments. Personality and Individual Differences, 223, 112613. https://doi.org/10.1016/j.paid.2024.112613

Bali, S., Chen, T. C., & Liu, M. C. (2024). Behavioral intentions of low-achieving students to use mobile English learning: Integrating self-determination theory, theory of planned behavior, and technology acceptance model approaches. International Journal of Human–Computer Interaction, 1–11. https://doi.org/10.1080/10447318.2024.2364142

Barth, S., & de Jong, M. D. T. (2017). The privacy paradox – Investigating discrepancies between expressed privacy concerns and actual online behavior – A systematic literature review. Telematics and Informatics, 34(7), 1038–1058. https://doi.org/10.1016/j.tele.2017.04.013

Baruh, L., & Cemalcilar, Z. (2014). It is more than personal: Development and validation of a multidimensional privacy orientation scale. Personality and Individual Differences, 70, 165–170. https://doi.org/10.1016/j.paid.2014.06.042

Bayaga, A., & du Plessis, A. (2024). Ramifications of the Unified Theory of Acceptance and Use of Technology (UTAUT) among developing countries’ higher education staffs. Education and Information Technologies, 29, 9689–9714. https://doi.org/10.1007/s10639-023-12194-6

Briz, L., Pereira, A., Carvalho, L., Juanes, J., & García-Peñalvo, F. (2016). Learning with mobile technologies – Students’ behavior. Computers in Human Behavior, 72, 612–620. https://doi.org/10.1016/j.chb.2016.05.027

Creswell, J. W., & Creswell, J. D. (2022). Research design: Qualitative, quantitative, and mixed methods approaches (6th ed.). SAGE Publications.

D'Amico, A., & Geraci, A. (2023). Beyond emotional intelligence: The new construct of meta-emotional intelligence. Frontiers in Psychology, 14, 1096663. https://doi.org/10.3389/fpsyg.2023.1096663

Davis, M., Lennerfors, T. T., & Tolstoy, D. (2022). Can blockchain-technology fight corruption in MNEs’ operations in emerging markets? Review of International Business and Strategy, 32(1), 39–56. https://doi.org/10.1108/RIBS-12-2020-0155

Davis Le Brun, S., Butchard, S., Kinderman, P., Umeh, K., & Whittington, R. (2023). Applying the theory of planned behaviour to understand mental health professionals’ intentions to work using a human rights-based approach in acute inpatient settings. Journal of Mental Health, 33(3), 326–332. https://doi.org/10.1080/09638237.2023.2245910

Dogruel, L., Joeckel, S., & Henke, J. (2023). Disclosing personal information in mHealth apps: Testing the role of privacy attitudes, app habits, and social norm cues. Social Science Computer Review, 41(5), 1791–1810. https://doi.org/10.1177/08944393221108820

Fiori, M., Agnoli, S., & Davis, S. K. (2023). New trends in emotional intelligence: Conceptualization, understanding, and assessment. Frontiers in Psychology, 14, 1266076. https://doi.org/10.3389/fpsyg.2023.1266076

Granić, A. (2022). Educational technology adoption: A systematic review. Education and Information Technologies, 27, 9725–9744. https://doi.org/10.1007/s10639-022-10951-7

Hagger, M. S., Cheung, M. W.-L., Ajzen, I., & Hamilton, K. (2022). Perceived behavioral control moderating effects in the theory of planned behavior: A meta-analysis. Health Psychology, 41(2), 155–167. https://doi.org/10.1037/hea0001153

Hameed, F., Qayyum, A., & Khan, F. A. (2024). A new trend of learning and teaching: Behavioral intention towards mobile learning. Journal of Computing in Education, 11, 149–180. https://doi.org/10.1007/s40692-022-00252-w

Hou, Y., & Yu, Z. (2023). The unified theory of acceptance and use of DingTalk for educational purposes in China: An extended structural equation model. Humanities & Social Sciences Communications, 10, 733. https://doi.org/10.1057/s41599-023-02257-x

Hsu, S.-H., Tang, K.-P., Lin, C.-H., Chen, P., & Wang, L.-H. (2023). Applying the theory of planned behavior to investigate type 2 diabetes patients' intention to receive injection therapy. Frontiers in Public Health, 11, 1066633. https://doi.org/10.3389/fpubh.2023.1066633

Huang, R. T. (2022). Explore the moderating impact of learners’ anticipated emotions on mobile learning outcome: A moderated mediation model. Innovations in Education and Teaching International, 60(6), 872–882. https://doi.org/10.1080/14703297.2022.2076717

Jeon, H., & Lee, C. (2022). Internet of Things Technology: Balancing privacy concerns with convenience. Telematics and Informatics, 70, 101816. https://doi.org/10.1016/j.tele.2022.101816

Kowal, M. (2024). Translation practices in cross-cultural social research and guidelines for the most popular approach: Back-translation. Anthropological Review, 87(3), 19–32. https://doi.org/10.18778/1898-6773.87.3.02

Krouska, A., Troussas, C., Kabassi, K., & Sgouropoulou, C. (2023). An empirical investigation of user acceptance of personalized mobile software for sustainability education. International Journal of Human–Computer Interaction, 1–8. https://doi.org/10.1080/10447318.2023.2241614

Li, F., Zhu, D., Lin, M.-T., & Kim, P. B. (2024). The technology acceptance model and hospitality and tourism consumers’ intention to use mobile technologies: Meta-analysis and structural equation modeling. Cornell Hospitality Quarterly, 65(4). https://doi.org/10.1177/19389655241226558

Li, Y., Zhang, X., Guo, X., & Wang, L. (2019). Underlying emotional mechanisms of routine m-health use in chronically ill patients. IEEE Transactions on Engineering Management, 1–12. https://doi.org/10.1109/TEM.2019.2940242

Liébana-Cabanillas, F., Japutra, A., Molinillo, S., Singh, N., & Sinha, N. (2020). Assessment of mobile technology use in the emerging market: Analyzing intention to use m-payment services in India. Telecommunications Policy, 44(9), 102009. https://doi.org/10.1016/j.telpol.2020.102009

Lin, S.-H., Lee, H.-C., Chang, C.-T., & Fu, C. J. (2020). Behavioral intention towards mobile learning in Taiwan, China, Indonesia, and Vietnam. Technology in Society, 63, 101387. https://doi.org/10.1016/J.TECHSOC.2020.101387

Lin, X., Wang, Q., Limniou, M., Huijser, H., Yu, J. J., & Gu, H. (2024). The mediating role of technology acceptance and moderating role of emotion regulation in faculty’s online professional development. Australasian Journal of Educational Technology, 40(2), 37–54. https://doi.org/10.14742/ajet.9060

Ling, E. C., Tussyadiah, I., Tuomi, A., Stienmetz, J., & Ioannou, A. (2021). Factors influencing users' adoption and use of conversational agents: A systematic review. Psychology & Marketing, 38(7), 1031–1051. https://doi.org/10.1002/mar.21491

Liu, G., & Wang, Y. (2024). Modeling EFL teachers’ intention to integrate informal digital learning of English (IDLE) into the classroom using the theory of planned behavior. System, 120, 1–14. https://doi.org/10.1016/j.system.2023.103193

Lopes, R., Navarro, J., Caetano, A., & Silva, A. J. (2017). Forecasting the influence of customer-related micro-events on employees’ emotional, attitudinal and physiological responses. European Journal of Work and Organizational Psychology, 26(6), 779–797. https://doi.org/10.1080/1359432X.2017.1360286

Pekaar, K., Linden, D., & Born, M. (2018). Self- and other-focused emotional intelligence: Development and validation of the Rotterdam Emotional Intelligence Scale (REIS). Personality and Individual Differences, 120, 222–233. https://doi.org/10.1016/j.paid.2017.08.045

Ried, L., Eckerd, S., & Kaufmann, L. (2022). Social desirability bias in PSM surveys and behavioral experiments: Considerations for design development and data collection. Journal of Purchasing and Supply Management, 28(1), 100743. https://doi.org/10.1016/j.pursup.2021.100743

Roberts, R., Flin, R., Millar, D., & Corradi, L. (2021). Psychological factors influencing technology adoption: A case study from the oil and gas industry. Technovation, 102, 102219. https://doi.org/10.1016/j.technovation.2020.102219

Sivakumar, C. L. V., Mone, V., & Abdumukhtor, R. (2024). Addressing privacy concerns with wearable health monitoring technology. WIREs Data Mining and Knowledge Discovery, 14(3), e1535. https://doi.org/10.1002/widm.1535

Svenningsson, J., Höst, G., Hultén, M., & Hallström, J. (2022). Students’ attitudes toward technology: exploring the relationship among affective, cognitive and behavioral components of the attitude construct. International Journal of Technology and Design Education, 32, 1531–1551. https://doi.org/10.1007/s10798-021-09657-7

Tarhini, A., AlHinaį, M., Al-Busaidi, A. S., Govindaluri, S. M., & Al Shaqsi, J. D. (2024). What drives the adoption of mobile learning services among college students: An application of SEM-neural network modeling. International Journal of Information Management Data Insights, 4(1), 100235. https://doi.org/10.1016/j.jjimei.2024.100235

Yang, M., Al Mamun, A., Gao, J., Rahman, M. K., Salameh, A. A., & Alam, S. S. (2024). Predicting m-health acceptance from the perspective of unified theory of acceptance and use of technology. Scientific Reports, 14, 339. https://doi.org/10.1038/s41598-023-50436-2

Zhang, X., & Zhang, Z. (2024). Leaking my face via payment: Unveiling the influence of technology anxiety, vulnerabilities, and privacy concerns on user resistance to facial recognition payment. Telecommunications Policy, 48(3), 102703. https://doi.org/10.1016/j.telpol.2023.102703

Zhu, Z., & Huang, W. (2023). A meta-analysis of mobile learning adoption using extended UTAUT. Information Development, 41(2). https://doi.org/10.1177/02666669231176428

Publié-e

2025-07-02

Numéro

Rubrique

Articles